【題目】已知直線(xiàn)BC//ED.
(1)如圖1,若點(diǎn)A在直線(xiàn)DE上,且∠B=44°,∠EAC=57°,求∠BAC的度數(shù);
(2)如圖2,若點(diǎn)A是直線(xiàn)DE的上方一點(diǎn),點(diǎn)G在BC的延長(zhǎng)線(xiàn)上求證:∠ACG=∠BAC+∠ABC;
(3)如圖3,FH平分∠AFE,CH平分∠ACG,且∠FHC比∠A的2倍少60°,直接寫(xiě)出∠A的度數(shù).
【答案】(1)79°;(2)見(jiàn)解析;(3)40°
【解析】分析:(1)由平行線(xiàn)的性質(zhì)得到∠BAE+∠B=180°,∠EAC=∠C,再由平角的定義即可得到結(jié)論;
(2)作AF//BC,得到AF//ED//BC,再由平行線(xiàn)的性質(zhì)得到∠FAC =∠ACG ,∠ABC=∠FAB,即可得到結(jié)論;
(3)作AM//BC,HN//BC, 得到AM//BC//ED,HN//BC//ED,
又設(shè)∠ACH=∠GCH=x, ∠AFH=∠EFH =y,則有∠A=2x-2y, ∠FHC=x-y,得到∠A=2∠FHC,又已知∠FHC=2∠A-60°,即可得到結(jié)論.
詳解:(1)∵BC//ED,∴∠BAE+∠B=180°,∠EAC=∠C,∴∠BAC=180°-∠B-∠EAC=79°;
(2)如圖,作AF//BC.又∵BC//ED,∴AF//ED//BC,
∴∠FAC =∠ACG ,且∠ABC=∠FAB,∴∠ACG=∠FAC=∠BAC+∠FAB=∠BAC+∠ABC.
(3)作AM//BC,HN//BC, ∴可證AM//BC//ED,HN//BC//ED,
又設(shè)∠ACH=∠GCH=x, ∠AFH=∠EFH =y,
∴∠A=2x-2y, ∠FHC=x-y,
∴∠A=2∠FHC,
又∵∠FHC=2∠A-60°,
∴∠A=40°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知2輛A型車(chē)和1輛B型車(chē)載滿(mǎn)貨物一次可運(yùn)貨10噸.用1輛A型車(chē)和2輛B型車(chē)載滿(mǎn)貨物一次可運(yùn)貨11噸.某物流公司現(xiàn)有31噸貨物,計(jì)劃同時(shí)租用A型車(chē)a輛和B型車(chē)b輛,一次運(yùn)完,且每輛車(chē)都滿(mǎn)載貨物.根據(jù)以上信息解答下列問(wèn)題:
(1)1輛A型車(chē)和1輛B型車(chē)載滿(mǎn)貨物一次分別可運(yùn)貨物多少?lài)崳?/span>
(2)請(qǐng)幫助物流公司設(shè)計(jì)租車(chē)方案
(3)若A型車(chē)每輛車(chē)租金每次100元,B型車(chē)每輛車(chē)租金每次120元.請(qǐng)選出最省錢(qián)的租車(chē)方案,并求出最少的租車(chē)費(fèi).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于平面直角坐標(biāo)系xOy中的點(diǎn)P(x,y),若點(diǎn)Q的坐標(biāo)為(x+ay,ax+y)(其中a為常數(shù),且a≠0),則稱(chēng)Q是點(diǎn)P的“a系聯(lián)動(dòng)點(diǎn)”.例如:點(diǎn)P(1,2)的“3系聯(lián)動(dòng)點(diǎn)”Q的坐標(biāo)為(7,5).
(1)點(diǎn)(3,0)的“2系聯(lián)動(dòng)點(diǎn)”的坐標(biāo)為 ;若點(diǎn)P的“系聯(lián)動(dòng)點(diǎn)”的坐標(biāo)是(,0),則點(diǎn)P的坐標(biāo)為 ;
(2)若點(diǎn)P(x,y)的“a系聯(lián)動(dòng)點(diǎn)”與“系聯(lián)動(dòng)點(diǎn)”均關(guān)于x軸對(duì)稱(chēng),則點(diǎn)P分布在 ,請(qǐng)證明這個(gè)結(jié)論;
(3)在(2)的條件下,點(diǎn)P不與原點(diǎn)重合,點(diǎn)P的“a系聯(lián)動(dòng)點(diǎn)”為點(diǎn)Q,且PQ的長(zhǎng)度為OP長(zhǎng)度的3倍,求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠1=30°,∠B=60°,AB⊥AC.
(1)∠DAB+∠B等于多少度?(2)AD與BC平行嗎?AB與CD平行嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】自行車(chē)的車(chē)輪輻條是一條線(xiàn),當(dāng)車(chē)輪飛速旋轉(zhuǎn)時(shí),輻條就飛速轉(zhuǎn)動(dòng)形成( 。
A.點(diǎn)B.線(xiàn)C.面D.體
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,已知, , 是的中點(diǎn),點(diǎn)、分別在、邊上運(yùn)動(dòng)(點(diǎn)不與點(diǎn)、重合),且保持,連接、、.在此運(yùn)動(dòng)變化的過(guò)程中,有下列結(jié)論,其中正確的結(jié)論是( )
①四邊形有可能成為正方形;②是等腰直角三角形;
③四邊形的面積是定值;④點(diǎn)到線(xiàn)段的最大距離為.
A. ①④ B. ①②③ C. ①②④ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的方程x2-(2m+1)x+m2+m=0.
(1)求證:方程恒有兩個(gè)不相等的實(shí)數(shù)根;
(2)設(shè)方程兩實(shí)數(shù)根分別為x1,x2,且滿(mǎn)足=13,求實(shí)數(shù)m的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com