【題目】如圖1,平面直角坐標系xOy中,已知拋物線y=ax2+4x與x軸交于O、A兩點.直線y=kx+m經過拋物線的頂點B及另一點D(D與A不重合),交y軸于點C.
(1)當OA=4,OC=3時.
①分別求該拋物線與直線BC相應的函數表達式;
②連結AC,分別求出tan∠CAO、tan∠BAC的值,并說明∠CAO與∠BAC的大小關系;
(2)如圖2,過點D作DE⊥x軸于點E,連接CE.當a為任意負數時,試探究AB與CE的位置關系?
【答案】(1)①y=﹣x2+4x,y=x+3;②∠CAO>∠BAC;(2)AB∥CE,理由見解析.
【解析】
(1)①根據題意得出A、C的坐標,由A的坐標可求出拋物線解析式及其頂點B坐標,根據B、C坐標可得直線解析式;
②tan∠CAO=,先根據勾股定理逆定理判定△ABC是直角三角形,再根據tan∠BAC=可得答案;
(2)根據y=ax2+4x求得A(-,0)、B(-,-),先求得tan∠BAO=2,再將B(-,-)代入y=kx+m得m=,據此知點C(0,),由可求得E(,0),根據tan∠CEO==2知∠BAO=∠CEO,從而得出答案.
(1)①∵OA=4,OC=3,
∴A(4,0),C(0,3),
將A(4,0)代入y=ax2+4x,得:16a+16=0,
解得a=﹣1,
則y=﹣x2+4x=﹣(x﹣2)2+4,
∴B(2,4),
將B(2,4),C(0,3)代入y=kx+m,得:,
解得,
∴y=x+3;
②tan∠CAO=,
∵AC2=(0﹣4)2+(3﹣0)2=25,BC2=(2﹣0)2+(4﹣3)2=5,AB2=(2﹣4)2+(4﹣0)2=20,
∴AC2=BC2+AB2,且BC=,AB=2,
∴△ABC是直角三角形,其中∠ABC=90°,
則tan∠BAC=,
∵tan∠CAO>tan∠BAC,
∴∠CAO>∠BAC.
(2)AB∥CE,理由如下:
由y=ax2+4x=0得x1=0,x2=﹣,則A(﹣,0),
又y=ax2+4x=a(x+)2﹣,
∴頂點B的坐標為(﹣,﹣),
則tan∠BAO=,
將B(﹣,﹣)代入y=kx+m,得:﹣+m=﹣,
解得m=,
∴點C(0,),即OC=,
由得x=﹣或x=,
∴E(,0),
∴OE=,
∴tan∠CEO=,
∴tan∠BAO=tan∠CEO,
∴∠BAO=∠CEO,
∴AB∥CE.
科目:初中數學 來源: 題型:
【題目】華聯(lián)超市用6000元購進甲、乙兩種商品,其中乙商品的件數比甲商品件數的多15件,甲、乙兩種商品的進價和售價如下表:(注:獲利=售價﹣進價)
甲 | 乙 | |
進價(元/件) | 22 | 30 |
售價(元/件) | 29 | 40 |
(1)該商場購進甲、乙兩種商品各多少件?
(2)該超市將購進的甲、乙兩種商品全部賣完后一共可獲得多少利潤?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知AB為⊙O的直徑,BC⊥AB于B,且BC=AB,D為半圓⊙O上的一點,連接BD并延長交半圓⊙O的切線AE于E.
(1)如圖1,若CD=CB,求證:CD是⊙O的切線;
(2)如圖2,若F點在OB上,且CD⊥DF,求的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,BC交⊙O于點D,E是的中點,AE與BC交于點F,∠C=2∠EAB.
(1)求證:AC是⊙O的切線;
(2)已知CD=4,CA=6,
①求CB的長;
②求DF的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】“端午節(jié)”是我國的傳統(tǒng)佳節(jié),民間歷來有吃“粽子”的習俗.我市某食品廠為了解市民對去年銷量較好的肉餡粽、豆沙餡粽、紅棗餡粽、蛋黃餡粽(以下分別用A、B、C、D表示)這四種不同口味粽子的喜愛情況,在節(jié)前對某居民區(qū)市民進行了抽樣調查,并將調查情況繪制成如下兩幅統(tǒng)計圖(尚不完整).
請根據以上信息回答:
(1)本次參加抽樣調查的居民有多少人?
(2)將兩幅不完整的圖補充完整;
(3)若居民區(qū)有8000人,請估計愛吃D粽的人數;
(4)若有外型完全相同的A、B、C、D粽各一個,煮熟后,小王吃了兩個.用列表或畫樹狀圖的方法,求他第二個吃到的恰好是C粽的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)問題發(fā)現
如圖1,△ACB和△DCE均為等邊三角形,點A,D,E在同一直線上,連接BE.填空:
①∠AEB的度數為______;
②線段AD,BE之間的數量關系為______.
(2)拓展探究
如圖2,△ACB和△DCE均為等腰直角三角形,∠ACB=∠DCE=90°,點A,D,E在同一直線上,CM為△DCE中DE邊上的高,連接BE,請判斷∠AEB的度數及線段CM,AE,BE之間的數量關系,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為積極響應我市創(chuàng)建“全國衛(wèi)生城市”的號召,某校1500名學生參加了衛(wèi)生知識競賽,成績記為A、B、C、D四等,從中隨機抽取了部分學生成績進行統(tǒng)計,繪制成如圖兩幅不完整的統(tǒng)計圖表,根據圖表信息,以下說法不正確的是( 。
A. D等所在扇形的圓心角為15°B. 樣本容量是200
C. 樣本中C等所占百分比是10%D. 估計全校學生成績?yōu)?/span>A等大約有900人
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點O是△ABC的邊AB上一點,⊙O與邊AC相切于點E,與邊BC,AB分別相交于點D,F,且DE=EF.
(1)求證:∠C=90°;
(2)當BC=3,sinA=時,求AF的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】若關于x的一元二次方程(x-2)(x-3)=m有實數根x1,x2,且x1≠x2,有下列結論:
①x1=2,x2=3; ②;
③二次函數y=(x-x1)(x-x2)+m的圖象與x軸交點的坐標為(2,0)和(3,0).
其中,正確結論的個數是( )
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com