【題目】下表是三種電話計(jì)費(fèi)方式:
月使用費(fèi) (元) | 主叫限定時(shí)間 (分鐘) | 主叫超時(shí)收費(fèi) (元/分鐘) | 被叫 | |
方式一 | 18 | 60 | 0.2 | 免費(fèi) |
方式二 | 28 | 120 | 0.2 | 免費(fèi) |
方式三 | 48 | 240 | 0.2 | 免費(fèi) |
說(shuō)明:月使用費(fèi)固定收取,主叫不超限定時(shí)間不再收費(fèi),主叫超時(shí)部分加收超時(shí)費(fèi).
設(shè)一個(gè)月內(nèi)主叫通話分鐘(為正整數(shù)).
(1)當(dāng)時(shí),按方式一計(jì)費(fèi)為______元;按方式二計(jì)費(fèi)為______元.
(2)當(dāng)時(shí),是否存在某一時(shí)間,使方式二與方式三的計(jì)費(fèi)結(jié)果相等?若存在,請(qǐng)求出對(duì)應(yīng)的值,若不存在,請(qǐng)說(shuō)明理由.
(3)當(dāng)時(shí),哪一種收費(fèi)方式最省錢(qián)?請(qǐng)說(shuō)明理由.
【答案】(1)24,28;(2)存在,;(3)當(dāng)時(shí),方式一最省錢(qián);當(dāng)時(shí),方式一和方式二一樣省錢(qián);當(dāng)時(shí),方式二最省錢(qián).
【解析】
(1)根據(jù)兩種計(jì)費(fèi)方式收費(fèi)標(biāo)準(zhǔn)列式計(jì)算,即可求出結(jié)論;
(2)當(dāng)時(shí),由方式二與方式三的計(jì)費(fèi)結(jié)果相等,即可得出關(guān)于的一元一次方程,解之即可得出結(jié)論;
(3)分、兩種情況比較計(jì)費(fèi)方式收費(fèi)的多少,此題得解.
解:(1)按方式一計(jì)費(fèi)需:(元,
按方式二計(jì)費(fèi)需28元.
故答案為:24;28.
(2)存在.
由題意得:,解得:.
答:主叫通話時(shí)間為220分鐘時(shí),方式二和方式三的計(jì)費(fèi)結(jié)果相等.
(3)①當(dāng)時(shí),顯然方式二比方式三省錢(qián),只需比較方式一和方式二.
如果方式一比方式二省錢(qián),則,解得:.
∴當(dāng)時(shí),方式一最省錢(qián);
當(dāng)時(shí),方式一和方式二一樣省錢(qián);
當(dāng)時(shí),方式二最省錢(qián).
②當(dāng)時(shí),顯然方式二比方式一省錢(qián),只需比較
方式二和方式三.
如果方式二比方式三省錢(qián),則,解得:.
由于,故當(dāng)時(shí),方式二最省錢(qián).
綜上所述,當(dāng)時(shí),方式一最省錢(qián);
當(dāng)時(shí),方式一和方式二一樣省錢(qián);
當(dāng)時(shí),方式二最省錢(qián).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,直線l:y=x+m與x軸、y軸分別交于點(diǎn)A和點(diǎn)B(0,﹣1),拋物線y=x2+bx+c經(jīng)過(guò)點(diǎn)B,與直線l的另一個(gè)交點(diǎn)為C(4,n).
(1)求n的值和拋物線的解析式;
(2)點(diǎn)D在拋物線上,DE∥y軸交直線l于點(diǎn)E,點(diǎn)F在直線l上,且四邊形DFEG為矩形(如圖2),設(shè)點(diǎn)D的橫坐標(biāo)為t(0<t<4),矩形DFEG的周長(zhǎng)為p,求p與t的函數(shù)關(guān)系式以及p的最大值;
(3)將△AOB繞平面內(nèi)某點(diǎn)M旋轉(zhuǎn)90°或180°,得到△A1O1B1,點(diǎn)A、O、B的對(duì)應(yīng)點(diǎn)分別是點(diǎn)A1、O1、B1.若△A1O1B1的兩個(gè)頂點(diǎn)恰好落在拋物線上,那么我們就稱(chēng)這樣的點(diǎn)為“落點(diǎn)”,請(qǐng)直接寫(xiě)出“落點(diǎn)”的個(gè)數(shù)和旋轉(zhuǎn)180°時(shí)點(diǎn)A1的橫坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司欲將件產(chǎn)品全部運(yùn)往甲,乙,丙三地銷(xiāo)售(每地均有產(chǎn)品銷(xiāo)售),運(yùn)費(fèi)分別為40元/件,24元/件,7元/件,且要求運(yùn)往乙地的件數(shù)是運(yùn)往甲地件數(shù)的3倍,設(shè)安排(為正整數(shù))件產(chǎn)品運(yùn)往甲地.
(1)根據(jù)信息填表:
甲地 | 乙地 | 丙地 | |
產(chǎn)品件數(shù)(件) | |||
運(yùn)費(fèi)(元) |
(2)若總運(yùn)費(fèi)為6300元,求與的函數(shù)關(guān)系式并求出的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB為⊙O的直徑,C是⊙O上一點(diǎn),過(guò)點(diǎn)C的直線交AB的延長(zhǎng)線于點(diǎn)D,AE⊥DC,垂足為E,F(xiàn)是AE與⊙O的交點(diǎn),AC平分∠BAE.
(1)求證:DE是⊙O的切線;
(2)若AE=6,∠D=30°,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC的三個(gè)頂點(diǎn)在格點(diǎn)上.
(1)作出與△ABC關(guān)于x軸對(duì)稱(chēng)的圖形△A1B1C1;
(2)求出A1,B1,C1三點(diǎn)坐標(biāo);
(3)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】平行四邊形在平面直角坐標(biāo)系中的位置如圖所示,,,AC=4,把平行四邊形繞點(diǎn)逆時(shí)針?lè)较蛐D(zhuǎn),使點(diǎn)落在軸上,則旋轉(zhuǎn)后點(diǎn)的對(duì)應(yīng)點(diǎn)的坐標(biāo)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)都是一個(gè)單位長(zhǎng)度,在平面直角坐標(biāo)系內(nèi),△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(1,4),B(1,1),C(3,1).
(1)畫(huà)出△ABC關(guān)于x軸對(duì)稱(chēng)的△A1B1C1;
(2)畫(huà)出△ABC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°后的△A2B2C2;
(3)在(2)的條件下,求線段BC掃過(guò)的面積(結(jié)果保留π).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,在邊長(zhǎng)為個(gè)單位長(zhǎng)度的小正方形組成的方格中,點(diǎn)都在格點(diǎn)上.
(1)畫(huà)出ΔABC繞著點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°得到的ΔA'B'C',并寫(xiě)出的A'的坐標(biāo)__________
(2)在(1)的情況下,直接寫(xiě)出線段AA’的長(zhǎng)度____________.
(3)在y軸上找一點(diǎn)P,使ΔPAB的周長(zhǎng)最小,直接寫(xiě)出P的坐標(biāo)_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)是16,點(diǎn)E在邊AB上,AE=3,點(diǎn)F是邊BC上不與點(diǎn)B、C重合的一個(gè)動(dòng)點(diǎn),把△EBF沿EF折疊,點(diǎn)B落在B′處,若△CDB′恰為等腰三角形,則DB′的長(zhǎng)為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com