【題目】問題背景
已知在△ABC中,AB邊上的動(dòng)點(diǎn)D由A向B運(yùn)動(dòng)(與A、B不重合),點(diǎn)E與點(diǎn)D同時(shí)出發(fā),由點(diǎn)C沿BC的延長(zhǎng)線方向運(yùn)動(dòng)(E不與C重合),連接DE交AC于點(diǎn)F,點(diǎn)H是線段AF上一點(diǎn).
(1)初步嘗試
如圖1,若△ABC是等邊三角形,DH⊥AC,且點(diǎn)D,E的運(yùn)動(dòng)速度相等.求證:HF=AH+CF.
小王同學(xué)發(fā)現(xiàn)可以由以下兩種思路解決問題:
思路一:過(guò)點(diǎn)D作DG∥BC,交AC于點(diǎn)G,先證GH=AH,再證GF=CF,從而證得結(jié)論成立;
思路二:過(guò)點(diǎn)E作EM⊥AC,交AC的延長(zhǎng)線于點(diǎn)M,先證CM=AH,再證HF=MF,從而證得結(jié)論成立.
請(qǐng)你任選一種思路,完整地書寫本小題的證明過(guò)程(如用兩種方法作答,則以第一種方法評(píng)分);
(2)類比探究
如圖2,若在△ABC中,∠ABC=90°,∠ADH=∠BAC=30°,且點(diǎn)D,E的運(yùn)動(dòng)速度之比是:1,求的值;
(3)延伸拓展
如圖3,若在△ABC中,AB=AC,∠ADH=∠BAC=36°,記=m,且點(diǎn)D,E的運(yùn)動(dòng)速度相等,試用含m的代數(shù)式表示(直接寫出結(jié)果,不必寫解答過(guò)程).
【答案】(1)見解析;(2)=2;(3).
【解析】
試題分析:(1)過(guò)點(diǎn)D作DG∥BC,交AC于點(diǎn)G,先證明△ADG是等邊三角形,得出GD=AD=CE,再證明GH=AH,由ASA證明△GDF≌△CEF,得出GF=CF,即可得出結(jié)論;
(2)過(guò)點(diǎn)D作DG∥BC,交AC于點(diǎn)G,先證出AH=GH=GD,AD=GD,由題意AD=CE,得出GD=CE,再證明△GDF≌△CEF,得出GF=CF,即可得出結(jié)論;
(3)過(guò)點(diǎn)D作DG∥BC,交AC于點(diǎn)G,先證出 DG=DH=AH,再證明△ADG∽△ABC,△ADG∽△DGH,△DGH∽△ABC,得出==m,===m,△DGH∽△ABC,得出==m,=m,證明△DFG∽△EFC,得出==m,=m,=,即可得出結(jié)果.
(1)證明(選擇思路一):過(guò)點(diǎn)D作DG∥BC,交AC于點(diǎn)G,如圖1所示:
則∠ADG=∠B,∠AGD=∠ACB,
∵△ABC是等邊三角形,
∴∠A=∠B=∠ACB=60°,
∴∠ADG=∠AGD=∠A,
∴△ADG是等邊三角形,
∴GD=AD=CE,
∵DH⊥AC,
∴GH=AH,
∵DG∥BC,
∴∠GDF=∠CEF,∠DGF=∠ECF,
在△GDF和△CEF中,
,
∴△GDF≌△CEF(ASA),
∴GF=CF,
∴GH+GF=AH+CF,
即HF=AH+CF;
(2)解:過(guò)點(diǎn)D作DG∥BC,交AC于點(diǎn)G,如圖2所示:
則∠ADG=∠B=90°,
∵∠BAC=∠ADH=30°,
∴∠HGD=∠HDG=60°,
∴AH=GH=GD,AD=GD,
根據(jù)題意得:AD=CE,
∴GD=CE,
∵DG∥BC,
∴∠GDF=∠CEF,∠DGF=∠ECF,
在△GDF和△CEF中,
,
∴△GDF≌△CEF(ASA),
∴GF=CF,
∴GH+GF=AH+CF,
即HF=AH+CF,
∴=2;
(3)解:=,理由如下:
過(guò)點(diǎn)D作DG∥BC,交AC于點(diǎn)G,如圖3所示:
則∠ADG=∠B,∠AGD=∠ACB,AD=EC,
∵AB=AC,∠BAC=36°,
∴∠ACB=∠B=∠ADG=∠AGD=72°,
∵∠ADH=∠BAC=36°,
∴AH=GH,∠DHG=72°=∠AGD,
∴DG=DH=AH,△ADG∽△ABC,△ADG∽△DGH,
∴==m,===m,
∴△DGH∽△ABC,
∴==m,
∴=m,
∵DG∥BC,
∴△DFG∽△EFC,
∴==m,
∴=m,
即=m,
∴=,
∴==+1=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若方程(m-1)x2+5x+m=0是關(guān)于x的一元二次方程,則m的取值不可能的是( )
A. m>1 B. m<1 C. m=1 D. m=0
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ABC與∠ACB的平分線交與點(diǎn)O, 過(guò)點(diǎn)O作MN∥BC,若AB=6,AC=9,則△AMN的周長(zhǎng)為_____________。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)y=的圖象如圖,以下結(jié)論:
①m<0;
②在每個(gè)分支上y隨x的增大而增大;
③若點(diǎn)A(﹣1,a)、點(diǎn)B(2,b)在圖象上,則a<b;
④若點(diǎn)P(x,y)在圖象上,則點(diǎn)P1(﹣x,﹣y)也在圖象上.
其中正確的個(gè)數(shù)是( )
A.4個(gè) B.3個(gè) C.2個(gè) D.1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)A的坐標(biāo)是(﹣5,10),點(diǎn)B的坐標(biāo)是(x,x﹣1),直線AB∥y軸,則x的值是( )
A.﹣5
B.11
C.5
D.﹣9
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com