如圖已知長方形ABCD中AB=8cm,BC=10cm,在邊CD上取一點E,將△ADE折疊使點D恰好落在BC邊上的點F,則CE的長為
3cm
3cm
分析:要求CE的長,應(yīng)先設(shè)CE的長為x,由將△ADE折疊使點D恰好落在BC邊上的點F可得Rt△ADE≌Rt△AFE,所以AF=10cm,EF=DE=8-x;在Rt△ABF中由勾股定理得:AB2+BF2=AF2,已知AB、AF的長可求出BF的長,又CF=BC-BF=10-BF,在Rt△ECF中由勾股定理可得:EF2=CE2+CF2,即:(8-x)2=x2+(10-BF)2,將求出的BF的值代入該方程求出x的值,即求出了CE的長.
解答:解:∵四邊形ABCD是矩形,
∴AD=BC=10cm,CD=AB=8cm,
根據(jù)題意得:Rt△ADE≌Rt△AFE,
∴∠AFE=90°,AF=10cm,EF=DE,
設(shè)CE=xcm,則DE=EF=CD-CE=(8-x)cm,
在Rt△ABF中由勾股定理得:AB2+BF2=AF2,
即82+BF2=102,
∴BF=6cm,
∴CF=BC-BF=10-6=4(cm),
在Rt△ECF中由勾股定理可得:EF2=CE2+CF2,
即(8-x)2=x2+42,
∴64-16x+x2=x2+16,
∴x=3(cm),
即CE=3cm.
故答案為:3cm.
點評:本題主要考查了圖形的翻折變換以及勾股定理、全等三角形、方程思想等知識,關(guān)鍵是熟練掌握勾股定理,找準對應(yīng)邊.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

27、我們給出如下定義:若一個四邊形中存在相鄰兩邊的平方和等于一條對角線的平方,則稱這個四邊形為勾股四邊形,這兩條相鄰的邊稱為這個四邊形的勾股邊.
(1)寫出你所學(xué)過的特殊四邊形中是勾股四邊形的兩種圖形的名稱正方形、長方形、直角梯形(任選兩個均可);
(2)如圖1,已知格點(小正方形的頂點)O(0,0),A(3,0),B(0,4),請你畫出以格點為頂點,OA,OB為勾股邊且對角線相等的勾股四邊形OAMB;
(3)如圖2,將△ABC繞頂點B按順時針方向旋轉(zhuǎn)60°,得到△DBE,連接AD,DC,∠DCB=30度.求證:DC2+BC2=AC2,即四邊形ABCD是勾股四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

8、如圖所示,在長方形內(nèi),已知S△ABC=S△EHG=20,SBDEF=4,則圖中陰影部分ADGI的面積是
44

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

我們給出如下定義:若一個四邊形中存在相鄰兩邊的平方和等于一條對角線的平方,則稱這個四邊形為勾股四邊形,這兩條相鄰的邊稱為這個四邊形的勾股邊.
(1)寫出你所學(xué)過的特殊四邊形中是勾股四邊形的兩種圖形的名稱
長方形
長方形
,
正方形
正方形
;
(2)如圖1,已知格點(小正方形的頂點)O(0,0),A(3,0),B(0,4),請你直接寫出所有以格點為頂點,OA,OB為勾股邊且對角線相等的勾股四邊形OAMB的頂點M的坐標;
(3)如圖2,將△ABC繞頂點B按順時針方向旋轉(zhuǎn)60°,得到△DBE,連結(jié)AD,DC,∠DCB=30°.求證:DC2+BC2=AC2,即四邊形ABCD是勾股四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•鹽都區(qū)一模)問題提出
我們在分析解決某些數(shù)學(xué)問題時,經(jīng)常要比較兩個數(shù)或代數(shù)式的大小,而解決問題的策略一般要進行一定的轉(zhuǎn)化,其中“作差法”就是常用的方法之一.所謂“作差法”:就是通過作差、變形,并利用差的符號確定他們的大小,即要比較代數(shù)式M、N的大小,只要作出它們的差M-N,若M-N>0,則M>N;若M-N=0,則M=N;若M-N<0,則M<N.
問題解決
如圖1,把邊長為a+b(a≠b)的大正方形分割成兩個邊長分別是a、b的小正方形及兩個矩形,試比較兩個小正方形面積之和M與兩個矩形面積之和N的大。
解:由圖可知:M=a2+b2,N=2ab.
∴M-N=a2+b2-2ab=(a-b)2
∵a≠b,∴(a-b)2>0.
∴M-N>0.
∴M>N.
類比應(yīng)用
(1)已知:多項式M=2a2-a+1,N=a2-2a.試比較M與N的大。
(2)已知:如圖2,銳角△ABC (其中BC為a,AC為b,AB為c)三邊滿足a<b<c,現(xiàn)將△ABC 補成長方形,使得△ABC的兩個頂
點為長方形的兩個端點,第三個頂點落在長方形的這一邊的對邊上.
①這樣的長方形可以畫
3
3
個;
②所畫的長方形中哪個周長最?為什么?
拓展延伸
已知:如圖3,銳角△ABC(其中BC為a,AC為b,AB為c)三邊滿足a<b<c,畫其BC邊上的內(nèi)接正方形EFGH,使E、F兩點在邊BC上,G、H分別在邊AC、AB上,同樣還可畫AC、AB邊上的內(nèi)接正方形,問哪條邊上的內(nèi)接正方形面積最大?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013屆江蘇省江陰市長涇片九年級上學(xué)期期末考試數(shù)學(xué)試卷(帶解析) 題型:解答題


【問題提出】我們在分析解決某些數(shù)學(xué)問題時,經(jīng)常要比較兩個數(shù)或代數(shù)式的大小,而解決問題的策略一般要進行一定的轉(zhuǎn)化,其中“作差法”就是常用的方法之一.所謂“作差法”:就是通過作差、變形,并利用差的符號確定他們的大小,即要比較代數(shù)式M、N的大小,只要作出它們的差M-N,若M-N>0,則M>N;若M-N=0,則M=N;若M-N<0,則M<N.
【問題解決】如圖1,把邊長為a+b(a≠b)的大正方形分割成兩個邊長分別是a、b的小正方形及兩個矩形,試比較兩個小正方形面積之和M與兩個矩形面積之和N的大。

解:由圖可知:

∵a≠b,∴>0.
∴M-N>0.∴M>N.
【類比應(yīng)用】(1)已知:多項式M =2a2-a+1 ,N =a2-2a .
試比較M與N的大。
(2)已知:如圖2,銳角△ABC (其中BC為a ,AC為 b,
AB為c)三邊滿足a <b < c ,現(xiàn)將△ABC 補成長方形,
使得△ABC的兩個頂點為長方形的兩個端點,第三個頂點落
在長方形的這一邊的對邊上。
 
①這樣的長方形可以畫     個;
②所畫的長方形中哪個周長最小?為什么?
【拓展延伸】 已知:如圖,銳角△ABC (其中BC為a,AC為b,AB為c)三邊滿足a <b < c ,畫其BC邊上的內(nèi)接正方形EFGH , 使E、F兩點在邊BC上,G、H分別在邊AC、AB上,同樣還可畫AC、AB邊上的內(nèi)接正方形,問哪條邊上的內(nèi)接正方形面積最大?為什么?

查看答案和解析>>

同步練習(xí)冊答案