如圖,⊙O是△ABC的外接圓,點(diǎn)D為
AC
上一點(diǎn),∠ABC=∠BDC=60°,AC=3cm,求△ABC的周長(zhǎng).
考點(diǎn):圓周角定理,等邊三角形的判定與性質(zhì)
專(zhuān)題:
分析:根據(jù)圓周角定理可以證明△ABC是等邊三角形,據(jù)此即可求得周長(zhǎng).
解答:解:∵
BC
=
BC
,
∴∠BDC=∠BAC.
∵∠ABC=∠BDC=60°,
∴∠ABC=∠BAC=60°,
∴∠ACB=60°.
∴∠ABC=∠BAC=∠ACB=60°.
∴△ABC為等邊三角形.
∵AC=3cm,
∴△ABC的周長(zhǎng)為3×3=9(cm).
點(diǎn)評(píng):本題考查了圓周角定理以及等邊三角形的判定定理,根據(jù)圓周角定理找出圖形中相等的角是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

若(a+1)2+
b+3
=0,則a+b=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,在△ABC中,BC=8cm,△ACE是軸對(duì)稱圖形,直線ED是它的對(duì)稱軸.若△BCE的周長(zhǎng)為18cm,那么AB=
 
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

若-3a+7>-3b+7,那么a
 
b(填“>”、“<”或“=”).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,在平面直角坐標(biāo)系中,點(diǎn)O是坐標(biāo)原點(diǎn),四邊形ABCD是菱形,點(diǎn)A的坐標(biāo)是(6,0),點(diǎn)B在x軸上,點(diǎn)C在y軸上,∠OBC=60°.

(1)求點(diǎn)D的坐標(biāo);
(2)動(dòng)點(diǎn)P、Q分別從B、A兩點(diǎn)同時(shí)出發(fā),點(diǎn)P以1個(gè)單位/秒的速度沿OA向點(diǎn)終點(diǎn)A勻速運(yùn)動(dòng),點(diǎn)Q以2個(gè)單位/秒的速度沿折線ADC勻速運(yùn)動(dòng),過(guò)點(diǎn)Q作QE⊥OA,垂足為E,設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t秒,△PEQ的面積為S,求S與t之間的函數(shù)關(guān)系式(要求寫(xiě)出自變量的取值范圍);
(3)在(2)的條件下,是否存在t的值,使得以P、Q、B、D四點(diǎn)連成四邊形是等腰梯形?若存在請(qǐng)求出t的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1,在Rt△ABC中,∠C=90°,sin∠ABC=
3
5
,AB=10cm,點(diǎn)D是BC上一定點(diǎn).動(dòng)點(diǎn)P從C出發(fā),以2cm/s的速度沿C→A→B方向運(yùn)動(dòng),動(dòng)點(diǎn)Q從D出發(fā),以1cm/s的速度沿D→B方向運(yùn)動(dòng).點(diǎn)P出發(fā)5秒后,點(diǎn)Q才開(kāi)始出發(fā),且當(dāng)一個(gè)點(diǎn)達(dá)到B時(shí),另一個(gè)點(diǎn)隨之停止.圖2是△BPQ的面積S(cm2)與點(diǎn)P的運(yùn)動(dòng)時(shí)間t(s)的部分函數(shù)圖象.

(1)求:AC、BC、CD的長(zhǎng)度.
(2)①在圖2中,補(bǔ)全5≤t≤8的圖象,并在( 。﹥(nèi)填上相應(yīng)的值.
     ②當(dāng)直線PQ將△ABC的面積分成1:3的兩部分時(shí),求t的值.
(3)當(dāng)點(diǎn)P在邊AB上時(shí),是否存在這樣的t的值,使得△BPQ為直角三角形?若存在,求出t的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在?ABCD中,AB=3,BC=4,AC的垂直平分線交AD于E,則△CDE的周長(zhǎng)為( 。
A、6B、7C、8D、10

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,正方形ABCD中,E為AB邊上一點(diǎn),過(guò)點(diǎn)D作DF⊥DE,與BC延長(zhǎng)線交于點(diǎn)F.連接EF,與CD邊交于點(diǎn)G,與對(duì)角線BD交于點(diǎn)H.
(1)若BF=BD=
2
,求BE的長(zhǎng);
(2)若M、N分別為EF、DB的中點(diǎn),求證:MN⊥DB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

某數(shù)減去2,再乘以3,等于某數(shù)的2倍,若設(shè)某數(shù)為x,則可得方程( 。
A、x-2×3=2x
B、3(x-2)=2
C、3x-2=2x
D、3(x-2)=2x

查看答案和解析>>

同步練習(xí)冊(cè)答案