【題目】如圖,中,,,它的周長為.若與,,三邊分別切于,,點(diǎn),則的長為( )
A. B. C. D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】夾在兩條平行線間的正方形ABCD、等邊三角形DEF如圖所示,頂點(diǎn)A、F分別在兩條平行線上.若A、D、F在一條直線上,則∠1與∠2的數(shù)量關(guān)系是( 。
A. ∠1+∠2=60° B. ∠2﹣∠1=30° C. ∠1=2∠2. D. ∠1+2∠2=90°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一矩形紙片OABC放在直角坐標(biāo)系中,O為原點(diǎn),C在x軸上,OA=6,OC=10.
(1)如圖1,在OA上取一點(diǎn)E,將△EOC沿EC折疊,使O點(diǎn)落在AB邊上的D點(diǎn),求E點(diǎn)的坐標(biāo);
(2)如圖2,在OA、OC邊上選取適當(dāng)?shù)狞c(diǎn)E′、F,將△E′OF沿E′F折疊,使O點(diǎn)落在AB邊上的D′點(diǎn),過D′作D′G⊥C′O交E′F于T點(diǎn),交OC′于G點(diǎn),T坐標(biāo)為(3,m),求m.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形中,,,點(diǎn)從開始沿折線以的速度運(yùn)動,點(diǎn)從開始沿邊以的速度移動,如果點(diǎn)、分別從、同時出發(fā),當(dāng)其中一點(diǎn)到達(dá)時,另一點(diǎn)也隨之停止運(yùn)動,設(shè)運(yùn)動時間為,當(dāng)________時,四邊形也為矩形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一輛摩拜單車放在水平的地面上,車把頭下方A處與坐墊下方B處在平行于地面的水平線上,A、B之間的距離約為49cm,現(xiàn)測得AC、BC與AB的夾角分別為45°與68°,若點(diǎn)C到地面的距離CD為28cm,坐墊中軸E處與點(diǎn)B的距離BE為4cm,求點(diǎn)E到地面的距離(結(jié)果保留一位小數(shù)).(參考數(shù)據(jù):sin68°≈0.93,cos68°≈0.37,cot68°≈0.40)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖(1),已知:在△ABC中,∠BAC=90°,AB=AC,直線m經(jīng)過點(diǎn)A,BD⊥直線m, CE⊥直線m,垂足分別為點(diǎn)D、E.證明:DE=BD+CE.
(2) 如圖(2),將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點(diǎn)都在直線m上,并且有∠BDA=∠AEC=∠BAC=,其中為任意銳角或鈍角.請問結(jié)論DE=BD+CE是否成立?如成立,請你給出證明;若不成立,請說明理由.
(3)拓展與應(yīng)用:如圖(3),D、E是D、A、E三點(diǎn)所在直線m上的兩動點(diǎn)(D、A、E三點(diǎn)互不重合),點(diǎn)F為∠BAC平分線上的一點(diǎn),且△ABF和△ACF均為等邊三角形,連接BD、CE,若∠BDA=∠AEC=∠BAC,試判斷△DEF的形狀.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)D是△ABC內(nèi)部的一點(diǎn),BD=CD,過點(diǎn)D作DE⊥AB,DF⊥AC,垂足分別為E、F,且BE=CF.求證:AB=AC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】周未,小麗騎自行車從家出發(fā)到野外郊游,從家出發(fā)0.5小時到達(dá)甲地,游玩一段時間后按原速前往乙地,小麗離家1小時20分鐘后,媽媽駕車沿相同路線前往乙地,行駛10分鐘時,恰好經(jīng)過甲地,如圖是她們距乙地的路程y(km)與小麗離家時間x(h)的函數(shù)圖象.
(1)小麗騎車的速度為 km/h,H點(diǎn)坐標(biāo)為 ;
(2)求小麗游玩一段時間后前往乙地的過程中y與x的函數(shù)關(guān)系;
(3)小麗從家出發(fā)多少小時后被媽媽追上?此時距家的路程多遠(yuǎn).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com