【題目】如圖,在△ABC中,ADCF分別是∠BAC、∠ACB的角平分線,且AD、CF交于點(diǎn)I, IEBE,下列結(jié)論:①∠BIE=∠CID;②SABCIE(ABBCAC);③BE=(ABBCAC);④ACAFDC.其中正確的結(jié)論是_______________ (填序號)

【答案】①②③.

【解析】

如圖,作IMABM,INACN.根據(jù)角平分線的性質(zhì)定理以及全等三角形的判定和性質(zhì)一一判斷即可;

如圖,作IMABMINACN

AD、CF分別是∠BAC、∠ACB的角平分線,IMAB,INAC,IEBC
IE=IM=IN,
SABC=SABI+SACI+SBCI=ABIM+ACIN+BCIE=IEAB+BC+AC),故②正確,
∵∠ABC+ACB+BAC=180°,∠IBE=ABC,∠IAC=BAC,∠ICA=ACB,
∴∠IBE+IAC+ICA=90°
∵∠CID=IAC+ICA=90°-IBE=BIE,故①正確,
BI=BI,IM=IE
RtBIMRtBIEHL),
BE=BM,同法可證:AM=AN,CN=CE,
BE=AB+BC-AC),故③正確,
④只有在∠ABC=60°的條件下,AC=AF+DC,故④錯誤,
故答案為:①②③.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c的圖象分別經(jīng)過點(diǎn)(0,3),(3,0),(4,﹣5).

(1)求這個二次函數(shù)的解析式;

(2)求這個二次函數(shù)的最值;

(3)若設(shè)這個次函數(shù)圖象與x軸交于點(diǎn)C,D(點(diǎn)C在點(diǎn)D的左側(cè)),且點(diǎn)A是該圖象的頂點(diǎn),請在這個二次函數(shù)的對稱軸上確定一點(diǎn)B,使△ACB時等腰三角形,求出點(diǎn)B的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,請按要求用尺規(guī)作出下列圖形(不寫作法,但要保留作圖痕跡),并填空.

作出的平分線交于點(diǎn);

于點(diǎn)平行依據(jù)是_____ __;

的度數(shù)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)A在反比例函數(shù)y=(x>0)的圖象上,作RtABC,邊BCx軸上,點(diǎn)D為斜邊AC的中點(diǎn),連結(jié)DB并延長交y軸于點(diǎn)E,若BCE的面積為4,則k=______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,A點(diǎn)的坐標(biāo)為(a,6),ABx軸于點(diǎn)B,cosOAB═,反比例函數(shù)y=的圖象的一支分別交AO、AB于點(diǎn)C、D.延長AO交反比例函數(shù)的圖象的另一支于點(diǎn)E.已知點(diǎn)D的縱坐標(biāo)為

(1)求反比例函數(shù)的解析式;

(2)求直線EB的解析式;

(3)求SOEB

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知OABCBC邊的中點(diǎn),且,則________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠MON=90,A是∠MON內(nèi)部的一點(diǎn),過點(diǎn)AAB⊥ON,垂點(diǎn)為點(diǎn)B,AB=3厘米,OB=4厘米,動點(diǎn)E、F同時從O點(diǎn)出發(fā),點(diǎn)E1.5厘米/秒的速度沿ON方向運(yùn)動,點(diǎn)F2厘米/秒的速度沿OM方向運(yùn)動,EFOA交于點(diǎn)C,連接AE,當(dāng)點(diǎn)E到達(dá)點(diǎn)B時,點(diǎn)F隨之停止運(yùn)動。設(shè)運(yùn)動時間為t秒(t>0)。

(1)當(dāng)t=1秒時,ΔEOF與ΔABO是否相似?請說明理由。

(2)在運(yùn)動過程中,不論t取何值時,總有EF⊥OA,為什么?

3)連接AF,在運(yùn)動過程中,是否存在某一時刻t,使得SΔAEF=S四邊形ABOF ?若存在,請求出此時t的值;若不存在,請說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某愛心企業(yè)在政府的支持下投入資金,準(zhǔn)備修建一批室外簡易的足球場和籃球場,供市民免費(fèi)使用,修建1個足球場和1個籃球場共需8.5萬元,修建2個足球場和4個籃球場共需27萬元.

(1)求修建一個足球場和一個籃球場各需多少萬元?

(2)該企業(yè)預(yù)計修建這樣的足球場和籃球場共20個,投入資金不超過90萬元,求至少可以修建多少個足球場?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=ACA=36°,BD,CE是角平分線,則圖中的等腰三角形共有

A. 8 B. 7 C. 6 D. 5

查看答案和解析>>

同步練習(xí)冊答案