【題目】如圖,拋物線yax2+bx+y軸交于點(diǎn)A,與x軸交于點(diǎn)BC,連結(jié)AB,以AB為邊向右做平行四邊形ABDE,點(diǎn)E落在拋物線上,點(diǎn)D落在x軸上,若拋物線的對(duì)稱軸恰好經(jīng)過點(diǎn)D,且∠ABD60°,則平行四邊形的面積為_____

【答案】

【解析】

根據(jù)題意,可以求得點(diǎn)A的坐標(biāo),然后根據(jù)平行四邊形的性質(zhì)和二次函數(shù)的性質(zhì),可以求得OABD的長(zhǎng),從而可以求得平行四邊形ABDE的面積.

∵拋物線y=ax2+bx+y軸交于點(diǎn)A,

∴點(diǎn)A的坐標(biāo)為(0),

又∵四邊形ABDE是平行四邊形,點(diǎn)D在拋物線的對(duì)稱軸上,點(diǎn)A和點(diǎn)E關(guān)于對(duì)稱軸對(duì)稱,

BD=AE=2OB,

OA=,∠ABD=60°,∠AOB=90°,

OB=1,

BD=2

∴平行四邊形的面積為:2×=2,

故答案為:2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形OABC是平行四邊形,以O為圓心,OA為半徑的圓交ABD,延長(zhǎng)AOOE,連接CD,CE,若CEO的切線,

1)求證:CDO的切線;

2)若BC3,AB5,求平行四邊形OABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小明在地面A處利用測(cè)角儀觀測(cè)氣球C的仰角為37°,然后他沿正對(duì)氣球方向前進(jìn)了40m到達(dá)地面B處,此時(shí)觀測(cè)氣球的仰角為45°.求氣球的高度是多少?參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=(m-2)x2+(m+3)x+m+2的圖象過點(diǎn)(0,5)

(1)求m的值,并寫出二次函數(shù)的表達(dá)式;

(2)求出二次函數(shù)圖象的頂點(diǎn)坐標(biāo)、對(duì)稱軸。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD,AB=6,BC=8,點(diǎn)EBC邊上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)B.C重合),連結(jié)AE,并作EFAE,交CD邊于點(diǎn)F,連結(jié)AF.設(shè)BE=x,CF=y.

1)求證:△ABE∽△ECF;

2)當(dāng)x為何值時(shí),y的值為2;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一次羽毛球賽中,甲運(yùn)動(dòng)員在離地面米的P點(diǎn)處發(fā)球,球的運(yùn)動(dòng)軌跡PAN看作一個(gè)拋物線的一部分,當(dāng)球運(yùn)動(dòng)到最高點(diǎn)A時(shí),其高度為3米,離甲運(yùn)動(dòng)員站立地點(diǎn)O的水平距離為5米,球網(wǎng)BC離點(diǎn)O的水平距離為6米,以點(diǎn)O為原點(diǎn)建立如圖所示的坐標(biāo)系,乙運(yùn)動(dòng)員站立地點(diǎn)M的坐標(biāo)為(m,0.

1)求拋物線的解析式(不要求寫自變量的取值范圍);

2)求羽毛球落地點(diǎn)N離球網(wǎng)的水平距離(即NC的長(zhǎng));

3)乙原地起跳后可接球的最大高度為2.4米,若乙因?yàn)榻忧蚋叨炔粔蚨颍?/span>m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠BAD=90°AB=AD,CB=CD,一個(gè)以點(diǎn)C為頂點(diǎn)的45°角繞點(diǎn)C旋轉(zhuǎn),角的兩邊與BA,DA交于點(diǎn)M,N,與BA,DA的延長(zhǎng)線交于點(diǎn)EF,連接AC.

1)在∠FCE旋轉(zhuǎn)的過程中,當(dāng)∠FCA=ECA時(shí),如圖1,求證:AE=AF;

2)在∠FCE旋轉(zhuǎn)的過程中,當(dāng)∠FCA≠ECA時(shí),如圖2,如果∠B=30°CB=2,用等式表示線段AEAF之間的數(shù)量關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)的圖象與x軸交于A(3,0)和B(1,0)兩點(diǎn),交y軸于點(diǎn)C(0,3),點(diǎn)C、D是二次函數(shù)圖象上的一對(duì)對(duì)稱點(diǎn),一次函數(shù)的圖象過點(diǎn)B、D.

(1)請(qǐng)直接寫出D點(diǎn)的坐標(biāo).

(2)求二次函數(shù)的解析式.

(3)根據(jù)圖象直接寫出使一次函數(shù)值大于二次函數(shù)值的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們把一條拋物線上橫坐標(biāo)與縱坐標(biāo)相等的點(diǎn)叫做這條拋物線的不動(dòng)點(diǎn).如圖,在平面直角坐標(biāo)系xOy中,已知拋物線yx22x,其頂點(diǎn)為A

1)試求拋物線yx22x不動(dòng)點(diǎn)的坐標(biāo);

2)平移拋物線yx22x,使所得新拋物線的頂點(diǎn)B是該拋物線的不動(dòng)點(diǎn),其對(duì)稱軸與x軸交于點(diǎn)C,且四邊形OABC是梯形,求新拋物線的表達(dá)式.

查看答案和解析>>

同步練習(xí)冊(cè)答案