【題目】1)已知,則的值為_____________;

2)已知中,不含項和項,則=______

【答案】 4

【解析】

1)根據(jù)冪的乘方法則,底數(shù)不變,指數(shù)相乘;同底數(shù)冪相除,底數(shù)不變,指數(shù)相減,逆用性質即可求解.

2)先根據(jù)多項式乘以多項式法則展開,合并同類項,得出方程,求出即可.

1)∵am=3,an=5,
a3m-2n=a3m÷a2n
=am3÷an2,
=33÷52,
=

2)(x2+mx+n)(x+2
=x3+2x2+mx2+2mx+nx+2n
=x3+2+mx2+2m+nx+2n,
∵(x2+mx+n)(x+2)的結果中不含x2項和x項,
2+m=0,2m+n=0,
解得:m=-2,n=4

故答案為:,4.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在四邊形ABCD中,AB=AD,BC=CD.
(1)如圖1,請連接AC,BD,求證:AC垂直平分BD;

(2)如圖2,若∠BCD=60°,∠ABC=90°,E,F(xiàn)分別為邊BC,CD上的動點,且∠EAF=60°,AE,AF分別與BD交于G,H,求證:△AGH∽△AFE;

(3)如圖3,在(2)的條件下,若 EF⊥CD,直接寫出 的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,,,且滿足方程組,連接,

1)求的面積;

2)動點從點出發(fā),以每秒個單位長度的速度沿軸向左運動,連接,設點運動的時間為秒, 的面積為 試用含的式子表示;

3)在的條件下,點,點上一點,連接,點延長線上,且,連接 當點軸負半軸上,, 四邊形的面積與的面積比為時,求此時值和點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有下列5個結論:
①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1的實數(shù)).
其中正確的結論有( )

A.2個
B.3個
C.4個
D.5個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為了進一步改進本校七年級數(shù)學教學,提高學生學習數(shù)學的興趣,校教務處在七年級所有班級中,每班隨機抽取了6名學生,并對他們的數(shù)學學習情況進行了問卷調查.我們從所調查的題目中,特別把學生對數(shù)學學習喜歡程度的回答(喜歡程度分為:A﹣非常喜歡”、“B﹣比較喜歡”、“C﹣不太喜歡”、“D﹣很不喜歡,針對這個題目,問卷時要求每位被調查的學生必須從中選一項且只能選一項)結果進行了統(tǒng)計,現(xiàn)將統(tǒng)計結果繪制成如下兩幅不完整的統(tǒng)計圖.


請你根據(jù)以上提供的信息,解答下列問題:

(1)補全上面的條形統(tǒng)計圖和扇形統(tǒng)計圖;

(2)所抽取學生對數(shù)學學習喜歡程度的眾數(shù)是  ;

(3)若該校七年級共有960名學生,請你估算該年級學生中對數(shù)學學習不太喜歡的有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點D為⊙O上一點,點C在直徑BA的延長線上,且∠CDA=∠CBD.

(1)判斷直線CD和⊙O的位置關系,并說明理由.
(2)過點B作⊙O的切線BE交直線CD于點E,若AC=2,⊙O的半徑是3,求∠BEC的正切值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某書店老板去圖書批發(fā)市場購買某種圖書,第一次用1200元購書若干本,并按該書定價7元出售,很快售完.由于該書暢銷,第二次購書時,每本書的批發(fā)價已比第一次提高了20%,他用1500元所購該書的數(shù)量比第一次多10本,當按定價售出200本時,出現(xiàn)滯銷,便以定價的4折售完剩余的書.

1)第一次購書的進價是多少元?

2)試問該老板這兩次售書總體上是賠錢了,還是賺錢了(不考慮其他因素)?若賠錢,賠多少;若賺錢,賺多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】因為,所以.這說明能被整除,同時也說明多項式有一個因式為;另外,當多項式的值為.閱讀上述材料回答問題:

1)由可知,當_時,多項式的值為;

2)一般地,如果一個關于字母的多項式時,的值為,那么與代數(shù)式之間有一定的關系,這種關系是:_____

3)已知關于的多項式能被整除,試求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】四邊形ABCD內接于⊙O,點E為AD上一點,連接AC,CB,∠B=∠AEC.
(1)如圖1,求證:CE=CD;

(2)如圖2,若∠B+∠CAE=120°,∠ACD=2∠BAC,求∠BAD的度數(shù);

(3)如圖3,在(2)的條件下,延長CE交⊙O于點G,若tan∠BAC= ,EG=2,求AE的長.

查看答案和解析>>

同步練習冊答案