【題目】如圖,在平面直角坐標(biāo)系中,Rt△ABC的三個(gè)頂點(diǎn)分別是A(﹣3,2),B(0,4),C(0,2).
(1)將△ABC以點(diǎn)C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,畫(huà)出旋轉(zhuǎn)后對(duì)應(yīng)的△A1B1C;平移△ABC,若點(diǎn)A的對(duì)應(yīng)點(diǎn)A2的坐標(biāo)為(0,﹣4),畫(huà)出平移后對(duì)應(yīng)的△A2B2C2;
(2)若將△A1B1C繞某一點(diǎn)旋轉(zhuǎn)可以得到△A2B2C2;請(qǐng)直接寫(xiě)出旋轉(zhuǎn)中心的坐標(biāo);
(3)在x軸上有一點(diǎn)P,使得PA+PB的值最小,請(qǐng)直接寫(xiě)出點(diǎn)P的坐標(biāo).
【答案】
(1)
解:如圖所示:
(2)
解:如圖所示:旋轉(zhuǎn)中心的坐標(biāo)為:( ,﹣1)
(3)
解:∵PO∥AC,
∴ = ,
∴ = ,
∴OP=2,
∴點(diǎn)P的坐標(biāo)為(﹣2,0)
【解析】(1)延長(zhǎng)AC到A1 , 使得AC=A1C,延長(zhǎng)BC到B1 , 使得BC=B1C,利用點(diǎn)A的對(duì)應(yīng)點(diǎn)A2的坐標(biāo)為(0,﹣4),得出圖象平移單位,即可得出△A2B2C2;(2)根據(jù)△△A1B1C繞某一點(diǎn)旋轉(zhuǎn)可以得到△A2B2C2進(jìn)而得出,旋轉(zhuǎn)中心即可;(3)根據(jù)B點(diǎn)關(guān)于x軸對(duì)稱點(diǎn)為A2 , 連接AA2 , 交x軸于點(diǎn)P,再利用相似三角形的性質(zhì)求出P點(diǎn)坐標(biāo)即可.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了促進(jìn)節(jié)能減排,倡導(dǎo)節(jié)約用電,某市將實(shí)行居民生活用電階梯電價(jià)方案,圖中折線反映了每戶每月用電電費(fèi)y(元)與用電量x(度)間的函數(shù)關(guān)系式.
(1)根據(jù)圖象,階梯電價(jià)方案分為三個(gè)檔次,填寫(xiě)下表:
檔次 | 第一檔 | 第二檔 | 第三檔 |
每月用電量x(度) | 0<x≤140 |
(2)小明家某月用電120度,需交電費(fèi) 元
(3)求第二檔每月電費(fèi)y(元)與用電量x(度)之間的函數(shù)關(guān)系式;
(4)在每月用電量超過(guò)230度時(shí),每多用1度電要比第二檔多付電費(fèi)m元,小剛家某月用電290度,交電費(fèi)153元,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC,△ADE是等邊三角形,B,C,D在同一直線上.
求證:(1)CE=AC+CD;(2)∠ECD=60°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某開(kāi)發(fā)商要建一批住房,經(jīng)調(diào)查了解,若甲、乙兩隊(duì)分別單獨(dú)完成,則乙隊(duì)完成的天數(shù)是甲隊(duì)的1.5倍;若甲、乙兩隊(duì)合作,則需120天完成.
(1)甲、乙兩隊(duì)單獨(dú)完成各需多少天?
(2)施工過(guò)程中,開(kāi)發(fā)商派兩名工程師全程監(jiān)督,需支付每人每天食宿費(fèi)150元.已知乙隊(duì)單獨(dú)施工,開(kāi)發(fā)商每天需支付施工費(fèi)為10000元.現(xiàn)從甲、乙兩隊(duì)中選一隊(duì)單獨(dú)施工,若要使開(kāi)發(fā)商選甲隊(duì)支付的總費(fèi)用不超過(guò)選乙隊(duì)的,則甲隊(duì)每天的施工費(fèi)最多為多少元?(總費(fèi)用=施工費(fèi)+工程師食宿費(fèi))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)O是等邊△ABC內(nèi)一點(diǎn),∠AOB=110°,∠BOC=α,將△BOC繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn)60°得△ADC,連接OD.
(1)求證:△COD是等邊三角形;
(2)當(dāng)α=150°時(shí),試判斷△AOD的形狀,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖象與x軸交于(x1 , 0),(x2 , 0)兩點(diǎn),且0<x1<1,1<x2<2,與y軸交于(0,﹣2).下列結(jié)論:①2a+b>1; ②a+b>2;③a﹣b<2;④3a+b>0; ⑤a<﹣1.其中正確結(jié)論的個(gè)數(shù)為( )
A.2
B.3
C.4
D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一艘輪船以30km/h的速度沿既定航線由南向北航行,途中接到臺(tái)風(fēng)警報(bào),某臺(tái)風(fēng)中心正以10km/h的速度由東向西移動(dòng),距臺(tái)風(fēng)中心200km的圓形區(qū)域(包括邊界)都屬臺(tái)風(fēng)影響區(qū),當(dāng)這艘輪船接到臺(tái)風(fēng)警報(bào)時(shí),它與臺(tái)風(fēng)中心的距離BC=500km,此時(shí)臺(tái)風(fēng)中心與輪船既定航線的最近距離AB=300km.
(1)如果這艘船不改變航向,那么它會(huì)不會(huì)進(jìn)入臺(tái)風(fēng)影響區(qū)?
(2)如果你認(rèn)為這艘輪船會(huì)進(jìn)入臺(tái)風(fēng)影響區(qū),那么從接到警報(bào)開(kāi)始,經(jīng)過(guò)多長(zhǎng)時(shí)間它就會(huì)進(jìn)入臺(tái)風(fēng)影響區(qū)?
(3)假設(shè)輪船航向不變,輪船航行速度不變,求受到臺(tái)風(fēng)影響的時(shí)間為多少小時(shí)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在菱形ABCD中,∠ABC=60°,E是對(duì)角線AC上任意一點(diǎn),F(xiàn)是線段BC延長(zhǎng)線上一點(diǎn),且CF=AE,連接BE、EF.
(1)如圖1,當(dāng)E是線段AC的中點(diǎn)時(shí),求證:BE=EF.
(2)如圖2,當(dāng)點(diǎn)E不是線段AC的中點(diǎn),其它條件不變時(shí),請(qǐng)你判斷(1)中的結(jié)論是否成立?若成立,請(qǐng)證明;若不成立,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)銷(xiāo)售甲、乙兩種品牌的智能手機(jī).這兩種手機(jī)的進(jìn)價(jià)和售價(jià)如下表所示:
甲 | 乙 | |
進(jìn)價(jià)(元/部) | 4400 | 2000 |
售價(jià)(元/部) | 5000 | 2500 |
該商場(chǎng)計(jì)劃購(gòu)進(jìn)兩種手機(jī)若干部,共需14.8萬(wàn)元,預(yù)計(jì)全部銷(xiāo)售后可獲毛利潤(rùn)共2.7萬(wàn)元.(毛利潤(rùn)=(售價(jià)一進(jìn)價(jià))×銷(xiāo)售量)
(Ⅰ)該商場(chǎng)計(jì)劃購(gòu)進(jìn)甲、乙兩種手機(jī)各多少部?
(II)通過(guò)市場(chǎng)調(diào)研,該商場(chǎng)決定在原計(jì)劃的基礎(chǔ)上,減少甲種手機(jī)的購(gòu)進(jìn)數(shù)量,增加乙種手機(jī)的購(gòu)進(jìn)數(shù)量.已知乙種手機(jī)增加的數(shù)量是甲種手機(jī)減少的數(shù)量的3倍,而且用于購(gòu)進(jìn)這兩種手機(jī)的總資金不超過(guò)156萬(wàn)元,該商場(chǎng)應(yīng)該怎樣進(jìn)貨,使全部銷(xiāo)售后獲得的毛利潤(rùn)最大?并求出最大毛利潤(rùn)。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com