【題目】在數(shù)軸上有三個點、,如圖所示.

(1)將點向左平移4個單位,此時該點表示的數(shù)是________;

(2)將點向左平移3個單位得到數(shù),再向右平移2個單位得到數(shù),則分別是多少?

(3)怎樣移動、中的兩點,使三個點表示的數(shù)相同?你有幾種方法?

【答案】(1)-3;(2);(3)見解析.

【解析】

(1)(2)向左移動為減,向右移動為加;(3)分別按A點不動、B點不動、C點不動三種情況進行解答即可.

(1)將點向左平移4個單位,則移動后的數(shù)為1-4=-3;

(2)將點向左平移3個單位得到數(shù),m=3-3,再向右平移2個單位得到數(shù),n=0+2

(3)有三種方法:方法一是不動,將向左平移3個單位,將向左平移5個單位;
方法二是不動,將向右平移3個單位,將向左平移2個單位;
方法三是不動,將點向右平移5個單位,將向右平移2個單位.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形的對角線交于點,則下列不能判斷四邊形是平行四邊形的條件是(

A.,

B.=,

C.,=

D.=,∠=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某工廠,甲負責加工A型零件,乙負責加工B型零件.已知甲加工60個A型零件所用時間和乙加工80個B型零件所用時間相同,每天甲、乙兩人共加工兩種零件35個,設(shè)甲每天加工x個A型零件.

(1)求甲、乙每天各加工多少個零件;

(2)根據(jù)市場預測估計,加工一個A型零件所獲得的利潤為30元/件,加工一個B型零件所獲得的利潤每件比A型少5元.現(xiàn)在需要加工甲、乙兩種零件共300個且要求所獲得的總利潤不低于8250元,求至少應生產(chǎn)多少個A型零件?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一輛轎車從甲地駛往乙地,到達乙地后返回甲地,速度是原來的1.5倍,共用t小時;一輛貨車同時從甲地駛往乙地,到達乙地后停止.兩車同時出發(fā),勻速行駛.設(shè)轎車行駛的時間為xh),兩車到甲地的距離為ykm),兩車行駛過程中yx之間的函數(shù)圖象如圖.

1)求轎車從乙地返回甲地時的速度和t的值;

2)求轎車從乙地返回甲地時yx之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;

3)直接寫出轎車從乙地返回甲地時與貨車相遇的時間.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在梯形ABCD中,ADBC,AD=6,BC=16,EBC的中點.點P以每秒1個單位長度的速度從點A出發(fā),沿AD向點D運動;點Q同時以每秒3個單位長度的速度從點C出發(fā),沿CB向點B運動.點P停止運動時,點Q也隨之停止運動.

1)當運動時間t為多少秒時,PQCD

2)當運動時間t為多少秒時,以點P,Q,E,D為頂點的四邊形是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】慶元大道兩側(cè)需要綠化,某綠化組承擔了此項任務(wù),綠化組工作一段時間后,提高了工作效率,該綠化組完成的綠化面積S(單位m2)與工作時間t(單位:h)之間的函數(shù)關(guān)系如圖所示,則該綠化組提高工作效率前每小時完成的綠化面積是( )

A. 200B. 300C. 400D. 500

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,ABAC4,∠BAC120°,MBC的中點,點EAB邊上的動點,點F是線段BM上的動點,則ME+EF的最小值等于____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC內(nèi)接于⊙O,∠B=60°,CD⊙O的直徑,點PCD延長線上的一點,且AP=AC

1)求證:PA⊙O的切線;

2)若PD=,求⊙O的直徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,已知ABC是等腰直角三角形,∠BAC=90°,點DBC的中點.作正方形DEFG,使點A、C分別在DGDE上,連接AE,BG

1)求證:AE=BG

2)將正方形DEFG繞點D逆時針方向旋轉(zhuǎn)αα≤360°)如圖2所示,判斷(1)中的結(jié)論是否仍然成立?如果仍成立,請給予證明;如果不成立,請說明理由;

3)若BC=DE=4,當旋轉(zhuǎn)角α為多少度時,AE取得最大值?直接寫出AE取得最大值時α的度數(shù),并利用備用圖畫出這時的正方形DEFG,最后求出這時AF的值.

1 2 備用圖

查看答案和解析>>

同步練習冊答案