【題目】已知:如圖,在△ABC中,ABAC,AD是△ABC的中線,AN為△ABC的外角∠CAM的平分線,CEAD,交AN于點E.求證:四邊形ADCE是矩形.

【答案】見解析

【解析】

由在ABC中,AB=AC,ADBC邊的中線,可得ADBC,∠BAD=CAD,又由ANABC的外角∠CAM的平分線,可得∠DAE=90°,又由CE⊥AN,可得∠AEC=∠DCE=90°,即可證得:四邊形ADCE為矩形;

∵在ABC中,ABAC,ADBC邊的中線,

ADBC,∠BAD=∠CAD,

∴∠ADC90°,

ANABC的外角∠CAM的平分線,

∴∠MAN=∠CAN,

∴∠BAD+CAD+MAN+CAN=180°,

∴∠DAE=∠CAD+CAN=×180°=90°

CE//AD,

CEAN,

∴∠AEC=∠DCE=90°

∴四邊形ADCE為矩形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知正方形ABCO,A0,3),點Dx軸上一動點,以AD為邊在AD的右側(cè)作等腰RtADE,∠ADE90°,連接OE,則OE的最小值為(

A. B. C. 2D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知反比例函數(shù)y=﹣ ,下列結(jié)論不正確的是( )
A.圖象必經(jīng)過點(﹣1,3)
B.若x>1,則﹣3<y<0
C.圖象在第二、四象限內(nèi)
D.y隨x的增大而增大

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C90°,AC12,BC5,將△ABCAB上的點O順時針旋轉(zhuǎn)90°,得到△A'B'C',連結(jié)BC'.若BC'A'B',則OB的值為( )

A. B. 5C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,BC10BC邊上的高為3.將點A繞點B逆時針旋轉(zhuǎn)90°得到點E,繞點C順時針旋轉(zhuǎn)90°得到點D.沿BC翻折得到點F,從而得到一個凸五邊形BFCDE,則五邊形BFCDE的面積為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,ADBC,ABC=ADC=90°,對角線AC,BD交于點O,DE平分∠ADCBC于點E,連接OE.

(1)求證:四邊形ABCD是矩形;

(2)若AB=2,求OEC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,P是正三角形ABC內(nèi)的一點,且PA6,PB8,PC10.若將△PAC繞點A逆時針旋轉(zhuǎn)后,得到△PAB

1)求點P與點P′之間的距離;

2)求∠APB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某電器商城銷售兩種型號的電風(fēng)扇,進價分別為元、元,下表是近兩周的銷售情況:

銷售時段

銷售型號

銷售收入

種型號

種型號

第一周

第二周

1)求、兩種型號的電風(fēng)扇的銷售單價;

2)若商城準(zhǔn)備用不多于元的金額再采購這兩種型號的電風(fēng)扇共臺,求種型號的電風(fēng)扇最多能采購多少臺?

3)在(2)的條件下商城銷售完這臺電風(fēng)能否實現(xiàn)利潤超過元的目標(biāo)?若能,請給出相應(yīng)的采購方案;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在四邊形ABCD中,AB=AD,BC=CD.
(1)如圖1,請連接AC,BD,求證:AC垂直平分BD;

(2)如圖2,若∠BCD=60°,∠ABC=90°,E,F(xiàn)分別為邊BC,CD上的動點,且∠EAF=60°,AE,AF分別與BD交于G,H,求證:△AGH∽△AFE;

(3)如圖3,在(2)的條件下,若 EF⊥CD,直接寫出 的值.

查看答案和解析>>

同步練習(xí)冊答案