【題目】如圖,在四邊形ABCD中,AB∥DC,AB=AD,對(duì)角線AC,BD交于點(diǎn)O,AC平分∠BAD,過(guò)點(diǎn)C作CE⊥AB交AB的延長(zhǎng)線于點(diǎn)E,連接OE.
(1)求證:四邊形ABCD是菱形;
(2)若AB=,BD=2,求OE的長(zhǎng).
【答案】(1)見(jiàn)解析;(2)OE=2.
【解析】
(1)先判斷出∠OAB=∠DCA,進(jìn)而判斷出∠DAC=∠DAC,得出CD=AD=AB,即可得出結(jié)論;
(2)先判斷出OE=OA=OC,再求出OB=1,利用勾股定理求出OA,即可得出結(jié)論.
解:(1)∵AB∥CD,
∴∠OAB=∠DCA,
∵AC為∠DAB的平分線,
∴∠OAB=∠DAC,
∴∠DCA=∠DAC,
∴CD=AD=AB,
∵AB∥CD,
∴四邊形ABCD是平行四邊形,
∵AD=AB,
∴ABCD是菱形;
(2)∵四邊形ABCD是菱形,
∴OA=OC,BD⊥AC,∵CE⊥AB,
∴OE=OA=OC,
∵BD=2,
∴OB=BD=1,
在Rt△AOB中,AB=,OB=1,
∴OA==2,
∴OE=OA=2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以AC為直徑作⊙O,交AB于D,過(guò)點(diǎn)O作OE∥AB,交BC于E.
(1)求證:ED為⊙O的切線;
(2)如果⊙O的半徑為,ED=2,延長(zhǎng)EO交⊙O于F,連接DF、AF,求△ADF的面積.
【答案】(1)證明見(jiàn)解析;(2)
【解析】試題分析:(1)首先連接OD,由OE∥AB,根據(jù)平行線與等腰三角形的性質(zhì),易證得≌ 即可得,則可證得為的切線;
(2)連接CD,根據(jù)直徑所對(duì)的圓周角是直角,即可得 利用勾股定理即可求得的長(zhǎng),又由OE∥AB,證得根據(jù)相似三角形的對(duì)應(yīng)邊成比例,即可求得的長(zhǎng),然后利用三角函數(shù)的知識(shí),求得與的長(zhǎng),然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.
試題解析:(1)證明:連接OD,
∵OE∥AB,
∴∠COE=∠CAD,∠EOD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠COE=∠DOE,
在△COE和△DOE中,
∴△COE≌△DOE(SAS),
∴ED⊥OD,
∴ED是的切線;
(2)連接CD,交OE于M,
在Rt△ODE中,
∵OD=32,DE=2,
∵OE∥AB,
∴△COE∽△CAB,
∴AB=5,
∵AC是直徑,
∵EF∥AB,
∴S△ADF=S梯形ABEFS梯形DBEF
∴△ADF的面積為
【題型】解答題
【結(jié)束】
25
【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個(gè)公共點(diǎn)M(1,0),且a<b.
(1)求b與a的關(guān)系式和拋物線的頂點(diǎn)D坐標(biāo)(用a的代數(shù)式表示);
(2)直線與拋物線的另外一個(gè)交點(diǎn)記為N,求△DMN的面積與a的關(guān)系式;
(3)a=﹣1時(shí),直線y=﹣2x與拋物線在第二象限交于點(diǎn)G,點(diǎn)G、H關(guān)于原點(diǎn)對(duì)稱,現(xiàn)將線段GH沿y軸向上平移t個(gè)單位(t>0),若線段GH與拋物線有兩個(gè)不同的公共點(diǎn),試求t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明、小華用除了正面的數(shù)字不同其他完全相同的4張卡片玩游戲,卡片上的數(shù)字分別是2、4、5、6,他倆將卡片洗勻后,背面朝上放置在桌面上,小明先抽,小華后抽,抽出的卡片不放回
(1)若小明恰好抽到了標(biāo)注4的卡片,直接寫出小華抽出的卡片上的數(shù)字比4大的概率是多少;
(2)小明、小華約定,若小明抽到的卡片的標(biāo)注數(shù)字比小華的大,則小明勝:反之,則小明負(fù),你認(rèn)為這個(gè)游戲是否公平?請(qǐng)用樹(shù)狀圖或列表法說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在邊長(zhǎng)為12的正方形ABCD中,E是邊CD的中點(diǎn),將△ADE沿AE對(duì)折至△AFE,延長(zhǎng)EF交BC于點(diǎn)G.則BG的長(zhǎng)為( 。
A. 5 B. 4 C. 3 D. 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校組織七年級(jí)學(xué)生體育健康抽測(cè),(1)班25名學(xué)生的成績(jī)(滿分為100分)統(tǒng)計(jì)如下:
90,74,88,65,98,76,81,42,85,70,55,80,95,88,72,87,61,56,76,66,78,72,82,63,100.
(1)90分及以上為A級(jí),75-89分為B級(jí),60-74分為C級(jí),60分以下為D級(jí),請(qǐng)把下面表格補(bǔ)充完整,并將圖中的條形圖補(bǔ)充完整;
等級(jí) | A | B | C | D |
人數(shù) | 8 |
(2)該校七年級(jí)共有1000名學(xué)生,如果60分以上為合格,請(qǐng)估計(jì)七年級(jí)有多少人合格?
(3)請(qǐng)選擇合適的統(tǒng)計(jì)圖表示出抽測(cè)中每一個(gè)等級(jí)的人數(shù)占總?cè)藬?shù)的百分比.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a是最大的負(fù)整數(shù),,c是-4的相反數(shù),且a,b,c分別是點(diǎn)A.B.C在數(shù)軸上對(duì)應(yīng)的數(shù).
(1)求a,b,c的值,并在數(shù)軸上標(biāo)出點(diǎn)A,B,C;
(2)在數(shù)軸上,若D到A的距離剛好是3,則D點(diǎn)叫做A的“幸福點(diǎn)”.則A的幸福點(diǎn)D所表示的數(shù)應(yīng)該是_______________.
(3)若動(dòng)點(diǎn)P從點(diǎn)B出發(fā)沿?cái)?shù)軸向正方向運(yùn)動(dòng),動(dòng)點(diǎn)Q同時(shí)從點(diǎn)A出發(fā)也沿?cái)?shù)軸向正方向運(yùn)動(dòng),點(diǎn)P的速度是每秒3個(gè)單位長(zhǎng)度,點(diǎn)Q的速度是每秒1個(gè)單位長(zhǎng)度,求運(yùn)動(dòng)幾秒后,點(diǎn)P可以追上點(diǎn)Q?
(4)在數(shù)軸上,若M到A,C的距離之和為6,則M叫做A,C的“幸福中心”.請(qǐng)直接寫出所有點(diǎn)M在數(shù)軸上對(duì)應(yīng)的數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】附加題:(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2.
求 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一次數(shù)學(xué)探究活動(dòng)課中,某同學(xué)有一塊矩形紙片,已知,,為射線上的一個(gè)動(dòng)點(diǎn),將沿折疊得到,若是直角三角形,則所有符合條件的點(diǎn)所對(duì)應(yīng)的的和為__________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com