【題目】在一次數(shù)學(xué)探究活動課中,某同學(xué)有一塊矩形紙片,已知,,為射線上的一個(gè)動點(diǎn),將沿折疊得到,若是直角三角形,則所有符合條件的點(diǎn)所對應(yīng)的的和為__________.
【答案】26
【解析】分析:根據(jù)軸對稱的性質(zhì)分別畫出點(diǎn)M在線段AD上和AD的延長線上時(shí)的圖形,結(jié)合勾股定理列方程.
詳解:因?yàn)椤?/span>NCB<90°,∠NBC<90°,所以∠BNC=90°.
①如圖1,當(dāng)點(diǎn)M在線段AD上時(shí),由軸對稱的性質(zhì)得,MN=MA,
設(shè)MN=MA=x,
Rt△CBN中,由勾股定理得CN=12,
Rt△MCD中,由勾股定理得,52+(13-x)2=(12+x)2,解得x=1.
①如圖2,當(dāng)點(diǎn)M在線段AD延長線上時(shí),因?yàn)?/span>∠BNM=90°,又∠BNC=90°,所以點(diǎn)M,C,N在一條直線上,由軸對稱的性質(zhì)得,MN=MA,
設(shè)MN=MA=x,
Rt△CBN中,由勾股定理得CN=12,
Rt△MCD中,由勾股定理得,52+(x-13)2=(x-12)2,解得x=25.
則1+25=26.
故答案為26.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB∥DC,AB=AD,對角線AC,BD交于點(diǎn)O,AC平分∠BAD,過點(diǎn)C作CE⊥AB交AB的延長線于點(diǎn)E,連接OE.
(1)求證:四邊形ABCD是菱形;
(2)若AB=,BD=2,求OE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,數(shù)軸的單位長度為1.
(1)如果點(diǎn)A,D表示的數(shù)互為相反數(shù),那么點(diǎn)B表示的數(shù)是多少?
(2)如果點(diǎn)B,D表示的數(shù)互為相反數(shù),那么圖中表示的四個(gè)點(diǎn)中,哪一點(diǎn)表示的數(shù)的絕對值最大?為什么?
(3)當(dāng)點(diǎn)B為原點(diǎn)時(shí),若存在一點(diǎn)M到A的距離是點(diǎn)M到D的距離的2倍,則點(diǎn)M所表示的數(shù)是____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD的對角線AC、BD相交于點(diǎn)O,BE∥AC,AE∥BD,OE與AB交于點(diǎn)F.
(1)試判斷四邊形AEBO的形狀,并說明理由;
(2)若OE=10,AC=16,求菱形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明早晨跑步,他從自己家出發(fā),向東跑了2km到達(dá)小彬家,繼續(xù)向東跑了1.5km到達(dá)小紅家,然后又向西跑了4.5km到達(dá)學(xué)校,最后又向東,跑回到自己家.
(1)以小明家為原點(diǎn),以向東為正方向,用1個(gè)單位長度表示1km,在圖中的數(shù)軸上,分別用點(diǎn)A表示出小彬家,用點(diǎn)B表示出小紅家,用點(diǎn)C表示出學(xué)校的位置;
(2)求小彬家與學(xué)校之間的距離;
(3)如果小明跑步的速度是250m/min,那么小明跑步一共用了多長時(shí)間?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC的三邊長分別為a,b,c,下列條件:①∠A=∠B-∠C;②∠A:∠B:∠C=3:4:5;③a2=(b+c)(b-c);④a:b:c=5:12:13,其中能判斷△ABC是直角三角形的個(gè)數(shù)有( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=3,AC=4,BC=5,P為邊BC上一動點(diǎn),PE⊥AB于E,PF⊥AC于F,M為EF中點(diǎn),則AM的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)P是邊長為的正方形ABCD的對角線BD上的動點(diǎn),過點(diǎn)P分別作PE⊥BC于點(diǎn)E,PF⊥DC于點(diǎn)F,連接AP并延長,交射線BC于點(diǎn)H,交射線DC于點(diǎn)M,連接EF交AH于點(diǎn)G,當(dāng)點(diǎn)P在BD上運(yùn)動時(shí)(不包括B、D兩點(diǎn)),以下結(jié)論中:①MF=MC;②AH⊥EF;③AP2=PMPH;④EF的最小值是.其中正確結(jié)論是( 。
A. ①③ B. ②③ C. ②③④ D. ②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l經(jīng)過⊙O的圓心O,且與⊙O交于A、B兩點(diǎn),點(diǎn)C在⊙O上,且∠AOC=30°,點(diǎn)P是直線l上的一個(gè)動點(diǎn)(與圓心O不重合),直線CP與⊙O相交于另一點(diǎn)Q,如果QP=QO,則∠OCP= .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com