【題目】等腰△ABC,BC=8,AB、AC的長是關(guān)于x的方程x210x+m=0的兩根,則m=__

【答案】2516.

【解析】

等腰ABC中,BC可能是方程的腰也可能是方程的底邊,應(yīng)分兩種情況進行討論.

當(dāng)BC是底邊時,AB=AC,則方程x2-10x+m=0有兩個相等的實根,即=0,即可得到關(guān)于m的方程,求得m的值;當(dāng)BC是腰時,則方程一定有一個解是x=8,根據(jù)一元二次方程的根與系數(shù)的關(guān)系即可求得另一邊即底邊,與m的值.

在方程x210x+m=0,x1+x2= =10,

當(dāng)這兩邊是等腰三角形的腰時,x1=x2=5,

x1x2=25=m,

當(dāng)有兩邊的長都為8,8+x2=10,

x2=2,

m=x1x2=2×8=16,

m=2516.

故答案為:2516.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是拋物線y=ax2+bx+c(a≠0)的部分圖象,其頂點坐標(biāo)為(1,n),拋物線與x軸的一個交點在點(3,0)和(4,0)之間.則下列結(jié)論

①a-b+c>0;②3a+b=0;

③b2=4a(c-n);

④一元二次方程ax2+bx+c=n-1有兩個不相等的實數(shù)根.

其中正確結(jié)論的個數(shù)是(  )

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形中,ADBC,點、分別在、上,,過點、分別作的垂線,垂足為、

(1)求證:△AGE≌△CHF

(2)連接,線段請交于點M,若CH=4,GH=10,求△AGM的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在長方形紙片ABCD中,AB=m,AD=n,將兩張邊長分別為64的正方形紙片按圖1,圖2兩種方式放置(圖1,圖2中兩張正方形紙片均有部分重疊),長方形中未被這兩張正方形紙片覆蓋的部分用陰影表示,設(shè)圖1中陰影部分的面積為S1,圖2中陰影部分的面積為S2

1)在圖1中,EF=___,BF=____;(用含m的式子表示)
2)請用含m、n的式子表示圖1,圖2中的S1,S2,若m-n=2,請問S2-S1的值為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小輝從家(0)出發(fā),沿著等腰三角形A0B的邊0A-AB-B0的路徑去勻勻速散步,其中0A=0B。設(shè)小輝距家(0)的距離為S,散步的時間為t,則下列圖形中能大致刻畫St之間函數(shù)關(guān)系的圖象是(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料:

用配方法可以解一元二次方程,還可以用它來解決很多問題.例如:因為3a2≥0,所以3a2+1就有最小值1,即3a2+1≥1,只有當(dāng)a=0時,才能得到這個式子的最小值1.同樣,因為-3a2≤0,所以-3a2+1有最大值1,即-3a2+1≤1,只有在a=0時,才能得到這個式子的最大值1
1)當(dāng)x=___時,代數(shù)式3x+32+4有最小____(填寫大或。┲禐____
2)當(dāng)x=_____時,代數(shù)式-2x2+4x+3有最大____(填寫大或小)值為____.

3)矩形花園的一面靠墻,另外三面的柵欄所圍成的總長度是16m,當(dāng)花園與墻相鄰的邊長為多少時,花園的面積最大?最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,D、E分別是ABCAB、BC上的點,AD=2BDBE=CE,若SABC=18,設(shè)ADF的面積為S1,CEF的面積為S2,則S1-S2的值是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,點P是等邊三角形△ABC中一點,線段AP繞點A逆時針旋轉(zhuǎn)60°到AQ,連接PQ、QC.

(1)求證:PB=QC;

(2)若PA=3,PB=4,∠APB=150°,求PC的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】直線ykxb與拋物線yx2交于A(x1y1),B(x2y2)兩點,當(dāng)OAOB時,直線AB恒過一個定點,該定點坐標(biāo)為___________

查看答案和解析>>

同步練習(xí)冊答案