【題目】如圖,邊長為的菱形中,,連接對角線,以AC為邊作第二個菱形ACC1D1,使∠D1AC60°,連接AC1,再以AC1為邊作第三個菱形AC1C2D2,使∠D2AC160°;…按此規(guī)律所作的第2019個菱形的邊長為______.

【答案】

【解析】

根據(jù)已知和菱形的性質(zhì)可分別求得AC,AC1,AC2的長,從而可發(fā)現(xiàn)規(guī)律根據(jù)規(guī)律不難求得第2019個菱形的邊長.

連接DBACM點,


∵四邊形ABCD是菱形,

AD=ABACDB,

∵∠DAB=60°,

∴△ADB是等邊三角形,

DB=AD=1,

BM=,

AM=,

AC=2AM=,

同理可得AC1=AC=2,AC2=AC1=3=3,

按此規(guī)律所作的第n個菱形的邊長為(n-1,

n=2019時,第2019個菱形的邊長為(2018

故答案為

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知整數(shù)a1,a2,a3,a4,…滿足下列條件:a1=0,a2=﹣|a1+1|,a3=﹣|a2+2|,a4=﹣|a3+3|,……以此類推,則a2018的值為(  )

A. ﹣1007 B. ﹣1008 C. ﹣1009 D. ﹣2018

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】足球訓練中,為了訓練球員快速搶斷轉(zhuǎn)身,教練設計了折返跑訓練.教練在東西方向的足球場上畫了一條直線插上不同的折返旗幟,如果約定向西為正,向東為負,練習一組的行駛記錄如下(單位:米):+40,-30+50,-25,+25,-30,+15-28,+16-20.

1)球員最后到達的地方在出發(fā)點的哪個方向?距出發(fā)點多遠?

2)球員訓練過程中,最遠處離出發(fā)點多遠?

3)球員在一組練習過程中,跑了多少米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】省射擊隊為從甲、乙兩名運動員中選拔一人參加全國比賽,對

他們進行了六次測試,測試成績?nèi)缦卤恚▎挝唬涵h(huán)):


第一次

第二次

第三次

第四次

第五次

第六次


10

8

9

8

10

9


10

7

10

10

9

8

1)根據(jù)表格中的數(shù)據(jù),計算出甲的平均成績是 環(huán),乙的平均成績是 環(huán);

2)分別計算甲、乙六次測試成績的方差;

3)根據(jù)(1)、(2)計算的結(jié)果,你認為推薦誰參加全國比賽更合適,請說明理由.

(計算方差的公式:s2])

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】A、B兩輛汽車同時從相距330千米的甲、乙兩地相向而行,s(千米)表示汽車與甲地的距離,t(分)表示汽車行駛的時間,如圖,L1,L2分別表示兩輛汽車的st的關(guān)系.

(1)L1表示哪輛汽車到甲地的距離與行駛時間的關(guān)系?

(2)汽車B的速度是多少?

(3)求L1,L2分別表示的兩輛汽車的st的關(guān)系式.

(4)2小時后,兩車相距多少千米?

(5)行駛多長時間后,A、B兩車相遇?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ABC=90°,AB=3,BC=4,∠BAC,∠ACB的平分線相交于點E,過點E作EF∥BC交AC于點F,則EF的長為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我市開展“美麗自宮,創(chuàng)衛(wèi)同行”活動,某校倡議學生利用雙休日在“花!眳⒓恿x務勞動,為了解同學們勞動情況,學校隨機調(diào)查了部分同學的勞動時間,并用得到的數(shù)據(jù)繪制了不完整的統(tǒng)計圖,根據(jù)圖中信息回答下列問題:

(1)將條形統(tǒng)計圖補充完整;

(2)扇形圖中的“1.5小時”部分圓心角是多少度?

(3)求抽查的學生勞動時間的眾數(shù)、中位數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,點M,N把線段AB分割成AM,MN和BN,若以AM,MN,BN為邊的三角形是一個直角三角形,則稱點M,N是線段AB的勾股分割點

(1)已知點M,N是線段AB的勾股分割點,若AM=3,MN=4,則BN的長為__________

(2)已知點C是線段AB上的一定點,其位置如圖2所示,請在BC上畫一點D,使C,D是線段AB的勾股分割點(要求尺規(guī)作圖,不寫畫法,保留作圖痕跡,畫出一種情形即可)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】設a,b是任意兩個不等實數(shù),我們規(guī)定:滿足不等式a≤x≤b的實數(shù)x的所有取值的全體叫做閉區(qū)間,表示為[a,b].對于一個函數(shù),如果它的自變量x與函數(shù)值y滿足:當m≤x≤n時,有m≤y≤n,我們就稱此函數(shù)是閉區(qū)間[m,n]上的“閉函數(shù)”.如函數(shù)y=﹣x+4,當x=1時,y=3;當x=3時,y=1,即當1≤x≤3時,恒有1≤y≤3,所以說函數(shù)y=﹣x+4是閉區(qū)間[1,3]上的“閉函數(shù)”,同理函數(shù)y=x也是閉區(qū)間[1,3]上的“閉函數(shù)”.

(1)反比例函數(shù)y=是閉區(qū)間[1,2018]上的“閉函數(shù)”嗎?請判斷并說明理由;

(2)如果已知二次函數(shù)y=x2﹣4x+k是閉區(qū)間[2,t]上的“閉函數(shù)”,求k和t的值;

3)如果(2)所述的二次函數(shù)的圖象交y軸于C點,A為此二次函數(shù)圖象的頂點,B為直線x=1上的一點,當ABC為直角三角形時,寫出點B的坐標.

查看答案和解析>>

同步練習冊答案