【題目】如圖,在Rt△ABC中,∠ABC=90°,AB=3,BC=4,∠BAC,∠ACB的平分線相交于點(diǎn)E,過(guò)點(diǎn)E作EF∥BC交AC于點(diǎn)F,則EF的長(zhǎng)為( )
A. B. C. D.
【答案】D
【解析】分析:延長(zhǎng)FE交AB于點(diǎn)D,作EG⊥BC、作EH⊥AC,由EF∥BC可證四邊形BDEG是矩形,由角平分線可得ED=EH=EG、∠DAE=∠HAE,從而知四邊形BDEG是正方形,再證△DAE≌△HAE、△CGE≌△CHE得AD=AH、CG=CH,設(shè)BD=BG=x,則AD=AH=3-x、CG=CH=4-x,由AC=5可得x=1,即BD=DE=1、AD=3,再證△ADF∽△ABC可得DF=,據(jù)此得出EF=DF-DE=.
詳解:如圖,延長(zhǎng)FE交AB于點(diǎn)D,作EG⊥BC于點(diǎn)G,作EH⊥AC于點(diǎn)H,
∵EF∥BC、∠ABC=90°,
∴FD⊥AB,
∵EG⊥BC,
∴四邊形BDEG是矩形,
∵AE平分∠BAC、CE平分∠ACB,
∴ED=EH=EG,∠DAE=∠HAE,
∴四邊形BDEG是正方形,
在△DAE和△HAE中,
∵,
∴△DAE≌△HAE(SAS),
∴AD=AH,
同理△CGE≌△CHE,
∴CG=CH,
設(shè)BD=BG=x,則AD=AH=6-x、CG=CH=8-x,
∵AC=,
∴6-x+8-x=10,
解得:x=2,
∴BD=DE=2,AD=4,
∵DF∥BC,
∴△ADF∽△ABC,
∴,即,
解得:DF=,
則EF=DF-DE=-1=,
故選D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,半徑為1個(gè)單位的圓片上有一點(diǎn)Q與數(shù)軸上的原點(diǎn)重合.(提示:圓的周長(zhǎng)C=2πr,結(jié)果保留π的形式)
(1)把圓片沿?cái)?shù)軸向右滾動(dòng)1周,點(diǎn)Q到達(dá)數(shù)軸上點(diǎn)A的位置,點(diǎn)A表示的數(shù)是 ;
(2)圓片在數(shù)軸上向右滾動(dòng)的周數(shù)記為正數(shù),圓片在數(shù)軸上向左滾動(dòng)的周數(shù)記為負(fù)數(shù),依次運(yùn)動(dòng)情況記錄如下:+2,﹣1,+3,﹣5,﹣1
①第幾次滾動(dòng)后,Q點(diǎn)距離原點(diǎn)最遠(yuǎn)?
②當(dāng)圓片結(jié)束運(yùn)動(dòng)時(shí),Q點(diǎn)運(yùn)動(dòng)的路程共有多少?此時(shí)點(diǎn)Q所表示的數(shù)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD的對(duì)角線AC,BD相交于點(diǎn)O,點(diǎn)E,F(xiàn)在BD上,BE=DF.
(1)求證:AE=CF;
(2)若AB=6,∠COD=60°,求矩形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】渦陽(yáng)某童裝專賣店在銷售中發(fā)現(xiàn),一款童裝每件進(jìn)價(jià)為元,銷售價(jià)為元時(shí),每天可售出件,為了迎接“六-一”兒童節(jié),商店決定采取適當(dāng)?shù)慕祪r(jià)措施,以擴(kuò)大銷售增加利潤(rùn),經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn),如果每件童裝降價(jià)元,那么平均可多售出件.
(1)若每件童裝降價(jià)元,每天可售出 件,每件盈利 元(用含的代數(shù)式表示);
每件童裝降價(jià)多少元時(shí),能讓利于顧客并且商家平均每天能贏利元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,邊長(zhǎng)為的菱形中,,連接對(duì)角線,以AC為邊作第二個(gè)菱形ACC1D1,使∠D1AC=60°,連接AC1,再以AC1為邊作第三個(gè)菱形AC1C2D2,使∠D2AC1=60°;…按此規(guī)律所作的第2019個(gè)菱形的邊長(zhǎng)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在□ABCD中,E、F為對(duì)角線BD上的兩點(diǎn),且∠DAE=∠BCF.
(1)求證:AE=CF;
(2)求證:AE∥CF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在“宏揚(yáng)傳統(tǒng)文化,打造書香校園”活動(dòng)中,學(xué)校計(jì)劃開(kāi)展四項(xiàng)活動(dòng):“A﹣國(guó)學(xué)誦讀”、“B﹣演講”、“C﹣課本劇”、“D﹣書法”,要求每位同學(xué)必須且只能參加其中一項(xiàng)活動(dòng),學(xué)校為了了解學(xué)生的意愿,隨機(jī)調(diào)查了部分學(xué)生,結(jié)果統(tǒng)計(jì)如下:
(1)如圖,希望參加活動(dòng)C占20%,希望參加活動(dòng)B占15%,則被調(diào)查的總?cè)藬?shù)為 人,扇形統(tǒng)計(jì)圖中,希望參加活動(dòng)D所占圓心角為 度,根據(jù)題中信息補(bǔ)全條形統(tǒng)計(jì)圖.
(2)學(xué),F(xiàn)有800名學(xué)生,請(qǐng)根據(jù)圖中信息,估算全校學(xué)生希望參加活動(dòng)A有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】反比例函數(shù)y1=(x>0)的圖象與一次函數(shù)y2=﹣x+b的圖象交于A,B兩點(diǎn),其中A(1,2)
(1)求這兩個(gè)函數(shù)解析式;
(2)在y軸上求作一點(diǎn)P,使PA+PB的值最小,并直接寫出此時(shí)點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)點(diǎn)從數(shù)軸上的原點(diǎn)開(kāi)始,先向右移動(dòng)1個(gè)單位長(zhǎng)度,再向左移動(dòng)2個(gè)單位長(zhǎng)度,再向右移動(dòng)3個(gè)單位長(zhǎng)度,再向左移動(dòng)4個(gè)單位長(zhǎng)度,……,移動(dòng)2019次后,該點(diǎn)所對(duì)應(yīng)的數(shù)是_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com