【題目】已知:S1=1+ + ,S2=1+ + ,S3=1+ + ,S4=1+ + ,S5=1+ + ,…則 =(用含n的代數(shù)式表示,其中n為正整數(shù))

【答案】1+
【解析】解:∵S1=1+ + ,S2=1+ + ,S3=1+ + ,S4=1+ + ,S5=1+ + ,…, ∴Sn=1+ + =1+ + =[1+ ]2
=1+
所以答案是:1+
【考點精析】掌握二次根式的性質(zhì)與化簡是解答本題的根本,需要知道1、如果被開方數(shù)是分數(shù)(包括小數(shù))或分式,先利用商的算數(shù)平方根的性質(zhì)把它寫成分式的形式,然后利用分母有理化進行化簡.2、如果被開方數(shù)是整數(shù)或整式,先將他們分解因數(shù)或因式,然后把能開得盡方的因數(shù)或因式開出來.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知x1是關(guān)于x的一元二次方程x2+mx10的一個根,則m的值是( 。

A.0B.1C.2D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(﹣5)2000+(﹣5)2001等于(
A.(﹣5)2000
B.(﹣5)2001
C.﹣5×(﹣5)2001
D.﹣4×(﹣5)2000

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如上圖,已知∠MON=45,OA1=1,作正方形A1B1C1A2,面積記作S1;再作第二個正方形A2B2C2A3,面積記作S2;繼續(xù)作第三個正方形A3B3C3A4,面積記作S3;點A1、A2、A3、A4……在射線ON上,點B1、B2、B3、B4……在射線OM上,依此類推,則第6個正方形的面積S6=_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知ABCD的對角線AC與BD交于點O,下列結(jié)論不正確的是(
A.當(dāng)AB=BC時,ABCD是菱形
B.當(dāng)AC⊥BD時,ABCD是菱形
C.當(dāng)OA=OB時,ABCD是矩形
D.當(dāng)∠ABD=∠CBD時,ABCD是矩形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)活動

(1)情境觀察

將矩形紙片ABCD沿對角線AC剪開,得到△ABC和△A′C′D,如圖23-1所示.將△A′C′D的頂點A′與點A重合,并繞點A(A′)按逆時針方向旋轉(zhuǎn),使點D、A(A′)、B在同一條直線上,如圖23-2所示.

觀察圖23-2可知:與BC相等的線段是 ,∠CAC′= 度.

(2)問題探究

如圖23-3,△ABC中,AG⊥BC于點G,以A為直角頂點,分別以AB、AC為直角邊,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,過點E、F作射線GA的垂線,垂足分別為P、Q. 試探究EP與FQ之間的數(shù)量關(guān)系,并證明你的結(jié)論.

(3)拓展延伸

如圖23-4,△ABC中,AG⊥BC于點G,分別以AB、AC為一邊向△ABC外作矩形ABME和矩形ACNF,射線GA交EF于點H. 若AB=k·AE,AC=k·AF,試探究HE與HF之間的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)yx22axa在-1≤x≤2上有最小值-4,則a的值為______________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將直線y=﹣2x+4向下平移5個單位長度,平移后直線的解析式為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】水果店張阿姨以每斤4元的價格購進某種水果若干斤,然后以每斤6元的價格出售,每天可售出150斤,通過調(diào)查發(fā)現(xiàn),這種水果每斤的售價每降低0.1元,每天可多售出30斤,為保證每天至少售出360斤,張阿姨決定降價銷售.

(1)若將這種水果每斤的售價降低x元,則每天的銷售量是  斤(用含x的代數(shù)式表示);

(2)銷售這種水果要想每天盈利450元,張阿姨需將每斤的售價降低多少元?

查看答案和解析>>

同步練習(xí)冊答案