如圖是用棋子擺成的“上”字:

如果按照以上規(guī)律繼續(xù)擺下去,那么通過觀察,第n個(gè)“上”字需用棋子的枚數(shù)是(  )
A、n+5B、2n+3
C、4n+2D、5n+1
考點(diǎn):規(guī)律型:圖形的變化類
專題:
分析:由圖可得,第1個(gè)“上”字中的棋子個(gè)數(shù)是6;第2個(gè)“上”字中的棋子個(gè)數(shù)是10;第3個(gè)“上”字中的棋子個(gè)數(shù)是14;…進(jìn)一步發(fā)現(xiàn)規(guī)律:第n個(gè)“上”字中的棋子個(gè)數(shù)是(4n+2);由此求得問題答案.
解答:解:第1個(gè)“上”字中的棋子個(gè)數(shù)是6=4+2;
第2個(gè)“上”字中的棋子個(gè)數(shù)是10=4×2+2;
第3個(gè)“上”字中的棋子個(gè)數(shù)是14=4×3+2;

所以,第n個(gè)“上”字中的棋子個(gè)數(shù)是(4n+2);
故選:C.
點(diǎn)評(píng):本題考查了圖形的變化規(guī)律,關(guān)鍵是通過歸納與總結(jié),得到其中的規(guī)律,利用規(guī)律解決問題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

下列關(guān)于單項(xiàng)式-
3x5y2
2
說法正確的是(  )
A、它的系數(shù)是-3
B、它的次數(shù)是5
C、它的次數(shù)是2
D、它的次數(shù)是7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

文藝演出時(shí),節(jié)目主持人站在舞臺(tái)的黃金分割點(diǎn)處最能使人產(chǎn)生美感.如圖,舞臺(tái)AB長(zhǎng)為30m,主持人站在離A點(diǎn)約11.5m的C處較恰當(dāng).當(dāng)她從C點(diǎn)向B點(diǎn)再走
 
m時(shí),我們發(fā)現(xiàn)主持人也處在比較恰當(dāng)?shù)奈恢蒙希?/div>

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖是規(guī)格為8×8的正方形網(wǎng)格,請(qǐng)?jiān)谒o網(wǎng)格中按下列要求操作:
(1)請(qǐng)?jiān)诰W(wǎng)格中建立平面直角坐標(biāo)系,使A點(diǎn)坐標(biāo)為(-2,4),B點(diǎn)坐標(biāo)為(-4,2);
(2)在第二象限內(nèi)的格點(diǎn)上面畫一點(diǎn)C,使點(diǎn)C與線段AB組成一個(gè)以AB為底的等腰三角形,且腰長(zhǎng)是無理數(shù),則C點(diǎn)坐標(biāo)是
 
,△ABC的周長(zhǎng)是
 
(結(jié)果保留根號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,正方形ABCD內(nèi)部有若干個(gè)點(diǎn),用這些點(diǎn)以及正方形ABCD的頂點(diǎn)A、B、C、D把原正方形分割成一些三角形(互相不重疊):

(1)填寫下表
正方形ABCD內(nèi)點(diǎn)的個(gè)數(shù)1234n
分割成的三角形的個(gè)數(shù)m46
 
 
 
(2)原正方形能否被分割成2014個(gè)三角形?若能,求此時(shí)正方形ABCD內(nèi)部有多少個(gè)點(diǎn)?若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知A是反比例函數(shù)y=
3
x
(x>0)的圖象上的一個(gè)動(dòng)點(diǎn),B是x軸上的一個(gè)動(dòng)點(diǎn),且AO=AB,當(dāng)點(diǎn)A在圖象上自左向右運(yùn)動(dòng)過程中,△AOB的面積變化情況是( 。
A、逐漸增大B、逐漸減小
C、不變D、以上都不是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知3x-y=0,則x:y=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

用計(jì)算器求下列各式的值:
(1)
9801

(2)±
77.0884
;
(3)
11
.(精確到0.01)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△ABC中,∠C=90°,DE是AB的垂直平分線,∠CAD=2∠DAB,求∠B的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案