【題目】如圖,已知⊙O為△ABC的外接圓,AC為直徑,且AC2

1)用尺規(guī)作圖作出∠ABE45°,與弧AC交于E點(diǎn)(保留作圖痕跡,不寫作法);

2)若∠A30°,求BE的長(zhǎng).

【答案】1)見(jiàn)解析;(2BE1+

【解析】

1)首先根據(jù)直徑所對(duì)的圓周角為90°可知∠ABC=90°,由此可知要使∠ABE45°,只要畫出∠ABC的角平分線即可,據(jù)此按照角平分線的作圖方法畫圖即可;

2)過(guò)點(diǎn)CCFBE,垂足為F,連接CE,首先根據(jù)AC為直徑得出∠ABC=90°,然后利用“30°角所對(duì)的直角邊為斜邊一半”得出BC的長(zhǎng),然后在RtBFC中利用三角函數(shù)求出CF,由此進(jìn)一步得出BF,最后在RtEFC中再次根據(jù)三角函數(shù)求出EF,由此即可得出答案.

1)如圖,∠ABE即為所求;

2)過(guò)點(diǎn)CCFBE,垂足為F,連接CE,

∵∠A=30°,

∴∠BEC=30°

AC為直徑,

∴∠ABC=90°,

由(1)可知∠ABE=45°,

∴∠EBC=45°,

RtABC中,∵∠A=30°,AC=,

BC=,

RtBFC中,sinFBC=,

CF=1,

∵∠EBC=45°,CFBE

∴∠BCF=45°,

BF=CF=1

RtEFC中,tanBEC=,

EF=,

BE=BF+EF=.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為落實(shí)美麗撫順的工作部署,市政府計(jì)劃對(duì)城區(qū)道路進(jìn)行了改造,現(xiàn)安排甲、乙兩個(gè)工程隊(duì)完成.已知甲隊(duì)的工作效率是乙隊(duì)工作效率的倍,甲隊(duì)改造360米的道路比乙隊(duì)改造同樣長(zhǎng)的道路少用3天.

(1)甲、乙兩工程隊(duì)每天能改造道路的長(zhǎng)度分別是多少米?

(2)若甲隊(duì)工作一天需付費(fèi)用7萬(wàn)元,乙隊(duì)工作一天需付費(fèi)用5萬(wàn)元,如需改造的道路全長(zhǎng)1200米,改造總費(fèi)用不超過(guò)145萬(wàn)元,至少安排甲隊(duì)工作多少天?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖分別是某款籃球架的實(shí)物圖與示意圖,已知于點(diǎn),底座的長(zhǎng)為米,底座與支架所成的角,點(diǎn)在支架上,籃板底部支架于點(diǎn),已知長(zhǎng)米,長(zhǎng)米,長(zhǎng)米.

1)求籃板底部支架支架所成的角的度數(shù).

2)求籃板底部點(diǎn)到地面的距離.(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABO的直徑,直線DEO相切于點(diǎn)C,過(guò)A,B分別作ADDE,BEDE,垂足為點(diǎn)D,E,連接ACBC,若ADCE3,則的長(zhǎng)為(  )

A.B.πC.πD.π

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD中,∠B90°,ADBC,ADAC,AB6,BC8.點(diǎn)P以每秒5個(gè)單位長(zhǎng)度由點(diǎn)A沿線段AC運(yùn)動(dòng);同時(shí),線段EF以相同的速度由CD出發(fā)沿DA方向平移,與AC交于點(diǎn)Q,連結(jié)PE,PF.當(dāng)點(diǎn)F與點(diǎn)B重合時(shí),停止所有運(yùn)動(dòng),設(shè)P運(yùn)動(dòng)時(shí)間為t秒.

1)求證:△APE≌△CFP

2)當(dāng)t1時(shí),若△PEF為直角三角形,求t的值.

3)作△PEF的外接圓O

當(dāng)O只經(jīng)過(guò)線段AC的一個(gè)端點(diǎn)時(shí),求t的值.

作點(diǎn)P關(guān)于EF的對(duì)稱點(diǎn)P′,當(dāng)P′落在CD上時(shí),請(qǐng)直接寫出線段CP′的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD中,AB=6,點(diǎn)E在邊CD上,且CD=3DE.將ADE沿AE對(duì)折至AFE,延長(zhǎng)EF交邊BC于點(diǎn)G,連接AG、CF.則下列結(jié)論:①△ABG≌△AFG;②BG=CG;③AGCF;④SEGC=SAFE;⑤∠AGB+∠AED=145°.其中正確的個(gè)數(shù)是( )

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=﹣x2+2mx+m+2的圖象與x軸交于A(﹣1,0),B兩點(diǎn),在x軸上方且平行于x軸的直線EF與拋物線交于E,F兩點(diǎn),EF的左側(cè),過(guò)E,F分別作x軸的垂線,垂足是M,N

1)求m的值及拋物線的頂點(diǎn)坐標(biāo);

2)設(shè)BNt,矩形EMNF的周長(zhǎng)為C,求Ct的函數(shù)表達(dá)式;

3)當(dāng)矩形EMNF的周長(zhǎng)為10時(shí),將△ENM沿EN翻折,點(diǎn)M落在坐標(biāo)平面內(nèi)的點(diǎn)記為M',試判斷點(diǎn)M'是否在拋物線上?并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知銳角∠AOB如圖,(1)在射線OA上取一點(diǎn)C,以點(diǎn)O為圓心,OC長(zhǎng)為半徑作,交射線OB于點(diǎn)D,連接CD;

2)分別以點(diǎn)C,D為圓心,CD長(zhǎng)為半徑作弧,交于點(diǎn)M,N;

3)連接OM,MN

根據(jù)以上作圖過(guò)程及所作圖形,下列結(jié)論中錯(cuò)誤的是(

A. ∠COM=∠CODB. OM=MN,則∠AOB=20°

C. MN∥CDD. MN=3CD

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在圓O中,弦ABCD相交于點(diǎn)E,且弧AC與弧BD相等.點(diǎn)D在劣弧AB上,聯(lián)結(jié)CO并延長(zhǎng)交線段AB于點(diǎn)F,聯(lián)結(jié)OA、OB.當(dāng)OA,且tanOAB

1)求弦CD的長(zhǎng);

2)如果AOF是直角三角形,求線段EF的長(zhǎng);

3)如果SCEF4SBOF,求線段AF的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案