已知線段AB的端點A(-1,-2),B(1,2),將線段AB平移后,點A坐標(biāo)是(1,2),則點B坐標(biāo)是________.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

●探究:
(1)在圖中,已知線段AB,CD,其中點分別為E,F(xiàn).
①若A(-1,0),B(3,0),則E點坐標(biāo)為
 

②若C(-2,2),D(-2,-1),則F點坐標(biāo)為
 
;
(2)在圖中,已知線段AB的端點坐標(biāo)為A(a,b),B(c,d),求出圖中AB中點D的坐標(biāo)(用含a,b,c,d的代數(shù)式表示),并給出求解過程.
●歸納:
無論線段AB處于直角坐標(biāo)系中的哪個位置,當(dāng)其端點坐標(biāo)為A(a,b),B(c,d),AB中點為D(x,y)時,x=
 
,y=
 
.(不必證明)
●運用:
在圖中,一次函數(shù)y=x-2與反比例函數(shù)y=
3x
的圖象交點為A,B.
①求出交點A,B的坐標(biāo);
②若以A,O,B,P為頂點的四邊形是平行四邊形,請利用上面的結(jié)論求出頂點P的坐標(biāo).
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

22、如圖,已知線段AB的端點B在直線l上(AB與l不垂直)請在直線l上另找一點C,使△ABC是等腰三角形,這樣的點能找?guī)讉?請你找出所有符合條件的點.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)在圖1中,已知線段AB、CD的中點分別為E,F(xiàn).
①若A (-1,0),B (3,0),則E點坐標(biāo)為
(1,0)
(1,0)
;
②若C (-2,2),D (-2,-1),則F點坐標(biāo)為
(-2,
1
2
(-2,
1
2
;
(2)在圖2中,已知線段AB的端點坐標(biāo)為A(a,b),B(c,d),求出圖中AB中點D的坐標(biāo)(用含a,b,c,d的代數(shù)式表示);
(3)運用題(2)的結(jié)論,在圖3中,一次函數(shù)y=x-2與反比例函數(shù)y=
3
x
的圖象交點為A(-1,-3),B(3,1).若以A,O,B,P為頂點的四邊形是平行四邊形,請利用上面的結(jié)論求出頂點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

課題學(xué)習(xí)
●探究:
(1)在圖1中,已知線段AB,CD,其中點分別為E,F(xiàn).
①若A(-1,0),B(3,0),則E點坐標(biāo)為
 

②若C(-2,2),D(-2,-1),則F點坐標(biāo)為
 
;
(2)在圖2中,已知線段AB的端點坐標(biāo)為A(a,b),B(c,d),求出圖中AB中點D的坐標(biāo)(用含a,b,c,d的
代數(shù)式表示),并給出求解過程.
●歸納:
無論線段AB處于直角坐標(biāo)系中的哪個位置,當(dāng)其端點坐標(biāo)為A(a,b),B(c,d),AB中點為D(x,y) 時,
x=
 
,y=
 
.(不必證明)
●運用:
在圖2中,y=|x-1|的圖象x軸交于P點.一次函數(shù)y=kx+1與y=|x-1|的圖象交點為A,B.
①求出交點A,B的坐標(biāo)(用k表示);
②若D為AB中點,且PD垂直于AB時,請利用上面的結(jié)論求出k的值.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012屆河南省中招臨考猜題(六)數(shù)學(xué)試卷(帶解析) 題型:解答題


【小題1】探究 (1)在圖①中,已知線段AB、CD,點E、F分別為線段AB、CD的中點.
①若A(-2,0),B(4,0),則E點的坐標(biāo)為                ;
②若C(-3,3),D(-3,-1),則F點的坐標(biāo)為            ;

圖①                                     圖②
【小題2】在圖②中,已知線段AB的端點坐標(biāo)為A求出圖中AB的中點D的坐標(biāo)(用含的代數(shù)式表示),并給出求解過程.
歸納無論線段AB處于指定坐標(biāo)系中的哪個位置,當(dāng)其端點坐標(biāo)為AAB中點為時,
           ,                .(不必證明)
運用已知如圖③,一次函數(shù)與反比例函數(shù)的圖象交點為A,B.
①求出交點A,B的坐標(biāo);
②若以A,O,B,P為頂點的四邊形
是平行四邊形,請利用上面的結(jié)論求出頂點P的坐標(biāo)]

查看答案和解析>>

同步練習(xí)冊答案