【題目】如圖,在四邊形 ABCD 中,∠C+∠D210°,E、F 分別是 ADBC 上的點(diǎn),將四邊形 CDEF 沿直線 EF 翻折,得到四邊形 C′D′EF, C′F AD 于點(diǎn) G,若△EFG 有兩個(gè)角相等,則∠EFG______ °.

【答案】40 50

【解析】

作出輔助線,利用翻折前后的角相等得到∠1+GFC=1+23=150°,再由三角形的內(nèi)角和定理得到∠3=2-30°,分情況討論即可解題,見(jiàn)詳解.

解:連接EF,如下圖,由翻折可知,3=EFC,

∵∠C+∠D210°,

∴易得∠1+GFC=1+23=150°,

∵∠1=180°-2-3,代入式得∠3=2-30°,

代入得∠1+22=210°,

若∠1=2,式可得,1=2=70°,3=40°,

若∠1=3,式可得,1=3=50°,2=80°,

若∠2=3,不成立,說(shuō)明此種情況不存在,

綜上∠EFG=40°50°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知一次函數(shù)

1)在平面直角坐標(biāo)系內(nèi)畫出該函數(shù)的圖象;

2)當(dāng)自變量x=4時(shí),函數(shù)y的值_________;

3)當(dāng)x0時(shí),請(qǐng)結(jié)合圖象,直接寫出y的取值范圍:_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知ABCBDE都是等邊三角形,且A,ED三點(diǎn)在一直線上.請(qǐng)你說(shuō)明DA﹣DB=DC

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC 中,AD BC 邊上的高,且∠ACB=∠BAD,AE 平分∠CAD,交 BC于點(diǎn) E,過(guò)點(diǎn) E EFAC,分別交 AB、AD 于點(diǎn) FG.則下列結(jié)論:①∠BAC90°;②∠AEF=∠BEF; ③∠BAE=∠BEA; ④∠B2AEF,其中正確的有( )

A. 4 個(gè)B. 3 個(gè)C. 2 個(gè)D. 1 個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下面的統(tǒng)計(jì)圖表示某體校射擊隊(duì)甲、乙兩名隊(duì)員射擊比賽的成績(jī),根據(jù)統(tǒng)計(jì)圖中的信息,下列結(jié)論正確的是( 。

A. 甲隊(duì)員成績(jī)的平均數(shù)比乙隊(duì)員的大

B. 乙隊(duì)員成績(jī)的平均數(shù)比甲隊(duì)員的大

C. 甲隊(duì)員成績(jī)的中位數(shù)比乙隊(duì)員的大

D. 甲隊(duì)員成績(jī)的方差比乙隊(duì)員的大

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】花香村計(jì)劃改造一片林地,估計(jì)這片林地可種梨樹(shù)80~133.根據(jù)經(jīng)驗(yàn),若種100棵樹(shù),果樹(shù)成熟后平均每棵樹(shù)上能結(jié)500個(gè)梨,在這個(gè)基礎(chǔ)上每多種一棵梨樹(shù),平均每棵會(huì)少結(jié)3個(gè)梨,每少種一棵,平均每棵樹(shù)會(huì)多結(jié)4個(gè)梨.

1)如果種植110棵梨樹(shù),則總共能結(jié)多少個(gè)梨?

2)設(shè)種植x棵梨樹(shù),總共能結(jié)y個(gè)梨,

①當(dāng)80≤x≤100時(shí),求出yx之間的函數(shù)關(guān)系式;

②當(dāng)100<x≤134時(shí),求出yx之間的函數(shù)關(guān)系式;

3)種多少棵梨樹(shù),總共能結(jié)的梨數(shù)最多?最多是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】直線ABx軸交于點(diǎn)A1,0),與y軸交于點(diǎn)B0,-2).

1)求直線AB的表達(dá)式;

2)若直線AB上有一動(dòng)點(diǎn)C,且,求點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在同一直角坐標(biāo)系中,函數(shù)ykx+1y=﹣k≠0)的圖象大致是( 。

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖在一塊長(zhǎng)為22 m,寬為17 m的矩形地面上,要修建同樣寬的兩條互相垂直的道路(兩條道路各與矩形的一條邊平行),剩余部分種上草坪,使草坪面積為300 m2.若設(shè)道路寬為x m,根據(jù)題意可列出方程為______________________________

【答案】(22-x)(17-x)=300(或x2-39x+74=0)

【解析】試題分析:把所修的兩條道路分別平移到矩形的最上邊和最左邊,則剩下的草坪是一個(gè)長(zhǎng)方形,根據(jù)長(zhǎng)方形的面積公式列方程.設(shè)道路的寬應(yīng)為x米,由題意有(22﹣x)(17﹣x=300,故答案為:(22﹣x)(17﹣x=300

考點(diǎn):由實(shí)際問(wèn)題抽象出一元二次方程.

型】填空
結(jié)束】
17

【題目】x=1是關(guān)于x的一元二次方程x2+mx﹣5=0的一個(gè)根,則此方程的另一個(gè)根是

查看答案和解析>>

同步練習(xí)冊(cè)答案