【題目】在同一直角坐標(biāo)系中,函數(shù)ykx+1y=﹣k≠0)的圖象大致是( 。

A.B.

C.D.

【答案】D

【解析】

先根據(jù)一次函數(shù)圖象與系數(shù)的關(guān)系得到k的范圍,然后根據(jù)k的范圍判斷反比例函數(shù)圖象的位置,逐一判斷即可.

解:A、對于ykx+1經(jīng)過第一、三象限,則k0,﹣k0,所以反比例函數(shù)圖象應(yīng)該分布在第二、四象限,所以A選項(xiàng)錯(cuò)誤;

B、一次函數(shù)ykx+1y軸的交點(diǎn)在x軸上方,所以B選項(xiàng)錯(cuò)誤;

C、對于ykx+1經(jīng)過第二、四象限,則k0,﹣k0,所以反比例函數(shù)圖象應(yīng)該分布在第一、三象限,所以C選項(xiàng)錯(cuò)誤;

D、對于ykx+1經(jīng)過第二、四象限,則k0,﹣k0,所以反比例函數(shù)圖象應(yīng)該分布在第一、三象限,所以D選項(xiàng)正確.

故選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)學(xué)課上,老師提出如下問題:

尺規(guī)作圖:過直線外一點(diǎn)作已知直線的平行線.

已知:直線l及其外一點(diǎn)A

求作:l的平行線,使它經(jīng)過點(diǎn)A

小云的作法如下:

(1)在直線l上任取一點(diǎn)B;

(2)B為圓心,BA長為半徑作弧,交直線l于點(diǎn)C;

(3)分別以AC為圓心,BA長為半徑作弧,兩弧相交于點(diǎn)D

(4)作直線AD.直線AD即為所求.

小云作圖的依據(jù)是_______________________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形 ABCD 中,∠C+∠D210°,E、F 分別是 ADBC 上的點(diǎn),將四邊形 CDEF 沿直線 EF 翻折,得到四邊形 C′D′EF, C′F AD 于點(diǎn) G,若△EFG 有兩個(gè)角相等,則∠EFG______ °.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線ABCD相交于點(diǎn)O,OE平分∠BOD

1)若∠AOC60°,求∠BOE的度數(shù);

2)若OF平分∠AOD,試說明OEOF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】端午節(jié)是我國的傳統(tǒng)佳節(jié),歷來有吃粽子的習(xí)俗.我市某食品加工廠,擁有A、B兩條粽子加工生產(chǎn)線.原計(jì)劃A生產(chǎn)線每小時(shí)加工粽子個(gè)數(shù)是B生產(chǎn)線每小時(shí)加工粽子個(gè)數(shù)的

1)若A生產(chǎn)線加工4000個(gè)粽子所用時(shí)間與B生產(chǎn)線加工4000個(gè)粽子所用時(shí)間之和恰好為18小時(shí),則原計(jì)劃A、B生產(chǎn)線每小時(shí)加工粽子各是多少個(gè)?

2)在(1)的條件下,原計(jì)劃A、B生產(chǎn)線每天均加工a小時(shí),由于受其他原因影響,在實(shí)際加工過程中,A生產(chǎn)線每小時(shí)比原計(jì)劃少加工100個(gè),B生產(chǎn)線每小時(shí)比原計(jì)劃少加工50個(gè).為了盡快將粽子投放到市場,A生產(chǎn)線每天比原計(jì)劃多加工3小時(shí),B生產(chǎn)線每天比原計(jì)劃多加工a小時(shí).這樣每天加工的粽子不少于6300個(gè),求a的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市為創(chuàng)建全國文明城市,開展“美化綠化城市”活動,計(jì)劃經(jīng)過若干年使城區(qū)綠化總面積新增360萬平方米.自2013年初開始實(shí)施后,實(shí)際每年綠化面積是原計(jì)劃的1.6倍,這樣可提前4年完成任務(wù).

(1)問實(shí)際每年綠化面積多少萬平方米?

(2)為加大創(chuàng)城力度,市政府決定從2016年起加快綠化速度,要求不超過2年完成,那么實(shí)際平均每年綠化面積至少還要增加多少萬平方米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,三孔橋橫截面的三個(gè)孔都呈拋物線形,兩小孔形狀、大小都相同,正常水位時(shí),大孔水面寬度AB=20m,頂點(diǎn)M距水面6m(即MO=6m),小孔頂點(diǎn)N距水面4.5mNC=4.5m),當(dāng)水位上漲剛好淹沒小孔時(shí),借助圖中的直角坐標(biāo)系,求此時(shí)大孔的水面寬度EF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,點(diǎn)D在BC上,DE∥AC,DF∥AB,下列四個(gè)判斷中不正確的是( )

A.四邊形AEDF是平行四邊形

B.若∠BAC=90°,則四邊形AEDF是矩形

C.若AD平分∠BAC,則四邊形AEDF是矩形

D.若AD⊥BC且AB=AC,則四邊形AEDF是菱形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】猜想與證明:小強(qiáng)想證明下面的問題:“有兩個(gè)角(圖中的)相等的三角形是等腰三角形”.但他不小心將圖弄臟了,只能看見圖中的和邊

1)請問:他能夠把圖恢復(fù)成原來的樣子嗎?若能,請你幫他寫出至少兩種以上恢復(fù)的方法并在備用圖上恢復(fù)原來的樣子.

2)你能夠證明這樣的三角形是等腰三角形嗎?(至少用兩種方法證明)

查看答案和解析>>

同步練習(xí)冊答案