作業(yè)寶如圖,已知拋物線與坐標軸分別交于A(-2,0),B(2,0),C(0,-1)三點,過坐標原點O的直線y=kx與拋物線交于M、N兩點.分別過點C、D(0,-2)作平行于x軸的直線l1、l2
(1)求拋物線對應二次函數(shù)的解析式;
(2)求證以ON為直徑的圓與直線l1相切;
(3)求線段MN的長(用k表示),并證明M、N兩點到直線l2的距離之和等于線
段MN的長.

解:(1)設拋物線對應二次函數(shù)的解析式為y=ax2+bx+c,
由函數(shù)經(jīng)過A(-2,0),B(2,0),C(0,-1)三點可得:,
解得
所以y=x2-1.
(2)設M(x1,y1),N(x2,y2),因為點M、N在拋物線上,

所以 y1=-1,y2=-1,所以=4(y2+1);
又ON2=x22+y22=4(y2+1)+y22=(y2+2)2,所以ON=|2+y2|,又因為y2為正,所以ON=2+y2,
設ON的中點E,分別過點N、E向直線l、作垂線,垂足為P、F,
則EF==1+
所以ON=2EF
即ON的中點到直線l1的距離等于ON長度的一半,
所以以ON為直徑的圓與l1相切.
(3)過點M作MH丄NP交NP于點H,則MN2=MH2+NH2=(x2-x12+(y2-y12,
又y1=kx1,y2=kx2,所以(y2-y12=k2(x2-x12
所以MN2=(1+k2)(x2-x12;
又因為點M,N在y=kx的圖象上又在拋物線上,
所以kx=x2-1,即x2-4kx-4=0,
所以x=
所以(x2-x12=16(1+k2
所以MN2=16(1+k22,MN=4(1+k2),
延長NP交l2于點Q,過點M作MS丄l2交l2于點S,
則MS+NQ=y1+2+y2+2=-1+-1+4=)+2
=(x1+x22-2x1x2=16k2+8,
所以MS+NQ=4k2+2+2=4(1+k2)=MN,
即M、N兩點到l2距離之和等于線段MN的長.
分析:(1)設函數(shù)解析式為y=ax2+bx+c,然后利用待定系數(shù)法求解即可;
(2)設M(x1,y1),N(x2,y2),然后代入拋物線方程,用含y2的式子表示出ON,設ON的中點E,分別過點N、E向直線l、作垂線,垂足為P、F,利用梯形的中位線定理可得出EF,與所求ON的值進行比較即可得出結論;
(3)過點M作MH丄NP交NP于點H,在RT△MNH中表示出MN2,結合直線方程將MN2化簡,求出MN,然后延長NP交l2于點Q,過點M作MS丄l2交l2于點S,則MS+NQ=y1+2+y2+2=-1+-1+4=)+2,利用根與系數(shù)的關系,求出,并代入,從而可得出結論.
點評:此題屬于二次函數(shù)的綜合題目,涉及了待定系數(shù)法求函數(shù)解析式、根與系數(shù)的關系,梯形的中位線定理,綜合性較強,關鍵是要求同學們能將所學的知識融會貫通.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,拋物線y=ax2+bx(a>0)與反比例函數(shù)的圖象相交于點A,B.已知點A的坐

為(1,4),點B(t,q)在第三象限內(nèi),且△AOB的面積為3(O為坐標原點).

(1)求反比例函數(shù)的解析式;

(2)用含t的代數(shù)式表示直線AB的解析式;

(3)求拋物線的解析式;

(4)過拋物線上點A作直線AC∥x軸,交拋物線于另一點C,把△AOB繞點O順時針旋轉(zhuǎn)90°,請在圖②中畫出旋轉(zhuǎn)后的三角形,并直接寫出所有滿足△EOC∽△AOB的點E的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:2012年初中畢業(yè)升學考試(山東東營卷)數(shù)學(解析版) 題型:解答題

已知拋物線經(jīng)過A(2,0). 設頂點為點P,與x軸的另一交點為點B.

(1)求b的值,求出點P、點B的坐標;

(2)如圖,在直線 上是否存在點D,使四邊形OPBD為平行四邊形?若存在,求出點D的坐

標;若不存在,請說明理由;

(3)在x軸下方的拋物線上是否存在點M,使△AMP≌△AMB?如果存在,試舉例驗證你的猜想;如果不存在,試說明理由.

 

查看答案和解析>>

同步練習冊答案