【題目】如圖,動點從原點出發(fā)向數(shù)軸負(fù)方向運動,同時動點也從原點出發(fā)向數(shù)軸正方向運動,2秒后,兩點相距20個單位長度.已知點,的運動速度之比為

1)求兩個動點運動速度;

2)在數(shù)軸上標(biāo)出,兩點從原點出發(fā)運動2秒時的位置;

3)若,兩點分別從(2)中標(biāo)出的位置同時向數(shù)軸負(fù)方向運動,則再經(jīng)過多長時間,,兩點相距8個單位長度?

【答案】1)動點A的速度為2單位長度/秒;動點B的速度為8單位長度/秒;(2)詳見解析;(32秒或秒相距8個單位長度.

【解析】

1)設(shè)動點A的速度為x單位長度/秒,動點B的速度為4x單位長度/秒,根據(jù)“2秒后,兩點相距20個單位長度列方程求解可得;

2)由(1)可知2秒后A、B所表示的數(shù);

3)設(shè)m秒后A、B兩點相距8個單位,則m秒后點A表示的數(shù)為-4-2m,點B表示的數(shù)為16-8m,由①點B在點A右側(cè)相距8個單位、②點B在點A左側(cè)相距8個單位,根據(jù)兩點間距離公式列方程求解即可.

1)設(shè)動點A的速度為x單位長度/秒,動點B的速度為4x單位長度/秒,根據(jù)題意得:

2x+4x=20,

解得:x=2

4x=8

答:動點A的速度為2單位長度/秒;動點B的速度為8單位長度/秒;

2)數(shù)軸上表示A、B兩點:A點位置在-4,B點位置在+16,

畫圖如下:

3)設(shè)m秒后A、B兩點相距8個單位,

m秒后點A表示的數(shù)為-4-2m,點B表示的數(shù)為16-8m,

①當(dāng)點B在點A右側(cè)相距8個單位時,得:16-8m--4-2m=8

解得:m=2;

②當(dāng)點B在點A左側(cè)相距8個單位時,得:-4-2m-16-8m=8,

解得:m=;

答:再經(jīng)過2秒或秒,A、B兩點相距8個單位.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點D、E分別是等邊三角形ABC的邊BC、AC上的點,連接ADBE交于點O,且ABD≌△BCE

1)若AB=3,AE=2,則BD=

2)若∠CBE=15°,則∠AOE=

3)若∠BAD=a,猜想∠AOE的度數(shù),并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,OA的方向是北偏東15°,OB的方向是西偏北50度.

(1)若AOC=AOB,則OC的方向是

(2)OD是OB的反向延長線,OD的方向是

(3)BOD可看作是OB繞點O逆時針方向至OD,作BOD的平分線OE,OE的方向是

(4)在(1)、(2)、(3)的條件下,COE=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,CD是經(jīng)過∠BCA頂點C的一條直線,CA=CB.E、F分別是直線CD上兩點,且∠BEC=∠CFA=∠α.

(1)若直線CD經(jīng)過∠BCA的內(nèi)部,且E,F(xiàn)在射線CD上.

①如圖1,若∠BCA=90°,∠α=90°,則BE CF;

②如圖2,若0°<∠BCA<180°,請?zhí)砑右粋關(guān)于∠α與∠BCA關(guān)系的條件 ,使①中的結(jié)論仍然成立,并說明理由;

(2)如圖3,若直線CD經(jīng)過∠BCA的外部,∠α=∠BCA,請?zhí)岢鲫P(guān)于EF,BE,AF三條線段數(shù)量關(guān)系的合理猜想: .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點P、Q分別是等邊△ABC邊AB、BC上的動點(端點除外),點P從頂點A、點Q從頂點B同時出發(fā),且它們的運動速度相同,連接AQ、CP交于點M.

(1)求證:△ABQ≌△CAP;

(2)當(dāng)點P、Q分別在AB、BC邊上運動時,∠QMC變化嗎?若變化,請說明理由;若不變,求出它的度數(shù).

(3)如圖2,若點P、Q在運動到終點后繼續(xù)在射線AB、BC上運動,直線AQ、CP交點為M,則∠QMC變化嗎?若變化,請說明理由;若不變,直接寫出它的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,直線AB分別與x軸、y軸交于A、B兩點,OC平分∠AOB交AB于點C,點D為線段AB上一點,過點D作DE//OC交y軸于點E,已知AO=m,BO=n,且m、n滿足n2-12+36+|n-2m|=0.

(1)求A、B兩點的坐標(biāo)?

(2)若點D為AB中點,求OE的長?

(3)如圖2,若點P(x,-2x+6)為直線AB在x軸下方的一點,點E是y軸的正半軸上一動點,以E為直角頂點作等腰直角△PEF,使點F在第一象限,且F點的橫、縱坐標(biāo)始終相等,求點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于x的一元二次方程(2m+1)x2+4mx+2m﹣3=0

)當(dāng)m=時,求方程的實數(shù)根;

(Ⅱ)若方程有兩個不相等的實數(shù)根,求實數(shù)m的取值范圍;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在邊長為 1 的小正方形組成的網(wǎng)格中,有如圖 所示的 A. B 兩點,在格點中任 意放置點 C,恰好能使ABC 的面積為 1,則這樣的 C 點有 ( )

A. 5 B. 6 C. 7 D. 8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在ABC,ADE中,∠BAC=DAE=90°,AB=ACAD=AE,點C,DE三點在同一條直線上,連接BDBE.以下四個結(jié)論:

BD=CE;②∠ACE+DBC=45°;③BDCE;④∠BAE+DAC=180°.其中結(jié)論正確的個數(shù)是(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步練習(xí)冊答案