【題目】已知拋物線軸交于兩點,與軸交于點.

1)求的取值范圍;

2)若,直線經(jīng)過點,與軸交于點,且,求拋物線的解析式;

3)若點在點左邊,在第一象限內(nèi),(2)中所得到拋物線上是否存在一點,使直線的面積為兩部分?若存在,求出點的坐標;若不存在,請說明理由.

【答案】1m≠-2;(2y=-x2+5x-6;(3)點P,-)或(20).

【解析】

1)由于拋物線與x軸有兩個不同的交點,可令y=0,則所得方程的根的判別式0,可據(jù)此求出m的取值范圍.
2)根據(jù)已知直線的解析式,可得到D點的坐標;根據(jù)拋物線的解析式,可用m表示出A、B的坐標,即可得到ADBD的長,代入AD×BD=5,即可求得m的值,從而確定拋物線的解析式.
3)直線PAACD的面積為14兩部分,即DHHC=1441,則點H0,-2)或(0-5),即可求解.

解:(1)∵拋物線與x軸有兩個不同的交點,
∴△=m-42+12m-1=m2+4m+4=m+220,
m≠-2
2)∵y=-x2-m-4x+3m-1=-x-3)(x+m-1),
∴拋物線與x軸的兩個交點為:(3,0),(1-m,0);
則:D0,-1),
則有:AD×BD=
解得:m=2(舍去)或-1,
m=-1,
拋物線的表達式為:y=-x2+5x-6①;
3)存在,理由:
如圖所示,點C0-6),點D0,-1),點A20),

直線PAACD的面積為14兩部分,
DHHC=1441,則點H0,-2)或(0,-5),
將點H、A的坐標代入一次函數(shù)表達式并解得:
直線HA的表達式為:y=x-2y=x-5②,
聯(lián)立①②并解得:x=2
故點P,-)或(20).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知一元二次方程2x2+2x﹣1=0的兩個根為x1,x2,且x1<x2,下列結(jié)論正確的是(  )

A. x1+x2=1 B. x1x2=﹣1 C. |x1|<|x2| D. x12+x1=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖(1),△AB1C1是邊長為1的等邊三角形;如圖(2),取AB1的中點C2,畫等邊三角形AB2C2,連接B1B2;如圖(3),取AB2的中點C3;畫等邊三角形AB3C3,連接B2B3;如圖(4),取AB3的中點C4,畫等邊三角形AB4C4,連接B3B4,則B3B4的長為_____.若按照這種規(guī)律一直畫下去,則BnBn+1的長為_____(用含n的式子表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在一塊直角三角板ABC中,C=90°,A=30°,BC=1,將另一個含30°角的EDF30°角的頂點D放在AB邊上,EF分別在AC、BC上,當點DAB邊上移動時,DE始終與AB垂直,若CEFDEF相似,則AD=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋一枚均勻硬幣正面朝上的概率為,下列說法錯誤的是

A. 連續(xù)拋一均勻硬幣2次必有1次正面朝上

B. 連續(xù)拋一均勻硬幣10次都可能正面朝上

C. 大量反復拋一均勻硬幣,平均100次出現(xiàn)正面朝上50

D. 通過拋一均勻硬幣確定誰先發(fā)球的比賽規(guī)則是公平的

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】8分)如圖,AC是O的直徑,OB是O的半徑,PA切O于點A,PB與AC的延長線交于點M,COB=APB.

(1)求證:PB是O的切線;

(2)當OB=3,PA=6時,求MB,MC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在一個可以自由轉(zhuǎn)動的轉(zhuǎn)盤中,指針位置固定,三個扇形的面積都相等,且分別標有數(shù)字1,2,3.

(1)小明轉(zhuǎn)動轉(zhuǎn)盤一次,當轉(zhuǎn)盤停止轉(zhuǎn)動時,指針所指扇形中的數(shù)字是奇數(shù)的概率為________;

(2)小明先轉(zhuǎn)動轉(zhuǎn)盤一次,當轉(zhuǎn)盤停止轉(zhuǎn)動時,記錄下指針所指扇形中的數(shù)字;接著再轉(zhuǎn)動轉(zhuǎn)盤一次,當轉(zhuǎn)盤停止轉(zhuǎn)動時,再次記錄下指針所指扇形中的數(shù)字,求這兩個數(shù)字之和是3的倍數(shù)的概率(用畫樹狀圖或列表等方法求解)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC=2,∠BAC=20°.動點P、Q分別在直線BC上運動,且始終保持∠PAQ=100°.設(shè)BP=xCQ=y,則yx之間的函數(shù)關(guān)系用圖象大致可以表示為( )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,點F從菱形ABCD的頂點A出發(fā),沿A→D→B1cm/s的速度勻速運動到點B,圖2是點F運動時,FBC的面積y(cm2)隨時間x(s)變化的關(guān)系圖象,則a的值為( 。

A. B. 2 C. D. 2

查看答案和解析>>

同步練習冊答案