問題情境:
如圖1,P是⊙O外的一點(diǎn),直線PO分別交⊙O于點(diǎn)A、B,則PA是點(diǎn)P到⊙O上的點(diǎn)的最短距離.
探究:
請(qǐng)您結(jié)合圖2給予證明,
歸納:
圓外一點(diǎn)到圓上各點(diǎn)的最短距離是:這點(diǎn)到連接這點(diǎn)與圓心連線與圓交點(diǎn)之間的距離.
圖中有圓,直接運(yùn)用:
如圖3,在Rt△ABC中,∠ACB=90°,AC=BC=2,以BC為直徑的半圓交AB于D,P是上的一個(gè)動(dòng)點(diǎn),連接AP,則AP的最小值是 .
|
圖中無圓,構(gòu)造運(yùn)用:
如圖4,在邊長為2的菱形中,∠=60°,是邊的中點(diǎn),是邊上一動(dòng)點(diǎn),將△沿所在的直線翻折得到△,連接,請(qǐng)求出長度的最小
值.
|
解:由折疊知,又M是AD的中點(diǎn),可得,故點(diǎn)在以AD為直徑的圓上.如圖8,以點(diǎn)M為圓心,MA為半徑畫⊙M,過M作MH⊥CD,垂足為H,(請(qǐng)繼續(xù)完成下列解題過程)
遷移拓展,深化運(yùn)用:
如圖6,E,F(xiàn)是正方形ABCD的邊AD上兩個(gè)動(dòng)點(diǎn),滿足AE=DF.連接CF交BD于點(diǎn)G,連接BE交AG于點(diǎn)H.若正方形的邊長為2,則線段DH長度的最小值是 .
|
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
如圖,已知AB是⊙O的直徑,直線CD與⊙O相切于點(diǎn)C,AD⊥CD于點(diǎn)D.
(1) 求證: AC平分∠DAB;
(2) 若點(diǎn)為的中點(diǎn), ,AC=8,
求AB和AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
某家商店的賬目記錄顯示,某天賣出26支牙刷和14盒牙膏,收入264元;另一天,以同樣的價(jià)格賣出同樣的65支牙刷和35盒牙膏,收入應(yīng)該是 元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
近期,中國足球改革方案由中央深改小組審議通過,中國足球迎來春天的氣息.甲、乙、丙三人進(jìn)行踢足球訓(xùn)練.球從一個(gè)人腳下隨機(jī)傳到另外一個(gè)人腳下,共傳球三次.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
今年三八節(jié)某市150家景區(qū)接待游客約5245000人,數(shù)字5245000用科學(xué)記數(shù)法表示為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,已知△BAD和△BCE均為等腰直角三角形,∠BAD=∠BCE=90°,點(diǎn)M為DE的中點(diǎn),過點(diǎn)E與AD平行的直線交射線AM于點(diǎn)N.
(1)當(dāng)A,B,C三點(diǎn)在同一直線上時(shí)(如圖1),求證:M為AN的中點(diǎn);
(2)將圖1中的△BCE繞點(diǎn)B旋轉(zhuǎn),當(dāng)A,B,E三點(diǎn)在同一直線上時(shí)(如圖2),求證:△ACN為等腰直角三角形;
(3)將圖1中△BCE繞點(diǎn)B旋轉(zhuǎn)到圖3位置時(shí), 當(dāng)A,B,M,N在同一直線上時(shí),
(2)中的結(jié)論是否仍成立?若成立,試證明之,若不成立,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com