【題目】某班抽查25名學(xué)生數(shù)學(xué)測驗(yàn)成績(單位:分),頻數(shù)分布直方圖如圖:

(1)成績x在什么范圍的人數(shù)最多?是多少人?

(2)若用半徑為2的扇形圖來描述,成績在60≤x<70的人數(shù)對應(yīng)的扇形面積是多少?

(3)從相成績在50≤x<60和90≤x<100的學(xué)生中任選2人.小李成績是96分,用樹狀圖或列表法列出所有可能結(jié)果,求小李被選中的概率.

【答案】(1)成績x在80≤x<90范圍的人數(shù)最多,有9人;(2);(3)

【解析】

試題分析:(1)觀察頻數(shù)分布直方圖得到80≤x<90范圍的人數(shù)最多;

(2)根據(jù)扇形面積公式計(jì)算即可

(3)畫出樹狀圖展示所有12種等可能的結(jié)果數(shù),再找出有C的結(jié)果數(shù),然后根據(jù)概率公式求解.

試題解析:(1)成績x在80≤x<90范圍的人數(shù)最多,有9人;

(2)成績在60≤x<70的人數(shù)對應(yīng)的扇形面積==;

(3)50≤x<60的兩名同學(xué)用A、B表示,90≤x<100的兩名同學(xué)用C、D表示(小李用C表示),畫樹狀圖為:

共有12種等可能的結(jié)果數(shù),其中有C的結(jié)果數(shù)為6,所以小李被選中的概率=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一不透明的盒子中放有三個(gè)分別寫有數(shù)字1,2,3的紅色小球和五個(gè)分別寫有1,2,3,4,5的白色小球,小球除顏色和數(shù)字外,其余完全相同.
(1)從中任意摸出一個(gè)小球,求摸出小球上的數(shù)字小于3的概率;
(2)現(xiàn)將五個(gè)白色小球取出后,放入另外一個(gè)不透明的盒子內(nèi),此時(shí),玲玲和亮亮做游戲,他倆約定游戲規(guī)則,從這兩個(gè)盒子中各摸出一個(gè)小球,它們上面的數(shù)字之和為奇數(shù),玲玲獲勝;和為偶數(shù),亮亮獲勝,這個(gè)游戲規(guī)則對雙方公平嗎為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商品每件標(biāo)價(jià)為150元,若按標(biāo)價(jià)打8折后,再降價(jià)10元銷售,仍獲利10%,則該商品每件的進(jìn)價(jià)為元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】因式分解:3x2﹣27=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小凡把果樹林分為兩部分,左地塊用新技術(shù)管理,右地塊用老方法管理,管理成本相同,她在左、右兩地塊上各隨機(jī)選取20棵果樹,按產(chǎn)品分成甲、乙、丙、丁四個(gè)等級(數(shù)據(jù)分組包括左端點(diǎn)不包括右端點(diǎn)),并制作如下兩幅不完整的統(tǒng)計(jì)圖:

(1)補(bǔ)齊左地塊統(tǒng)計(jì)圖,求右地塊乙級所對應(yīng)的圓心角的度數(shù);

(2)比較兩地塊的產(chǎn)量水平,并說明試驗(yàn)結(jié)果;

(3)在左地塊隨機(jī)抽查一棵果樹,求該果樹產(chǎn)量為乙級的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了解學(xué)生對籃球、足球、排球、羽毛球、乒乓球這五種球類運(yùn)動(dòng)的喜愛情況,隨機(jī)抽取一部分學(xué)生進(jìn)行問卷調(diào)查,統(tǒng)計(jì)整理并繪制了以下兩幅不完整的統(tǒng)計(jì)圖:

請根據(jù)以上統(tǒng)計(jì)圖提供的信息,解答下列問題:

(1)共抽取_____名學(xué)生進(jìn)行問卷調(diào)查;

(2)補(bǔ)全條形統(tǒng)計(jì)圖,求出扇形統(tǒng)計(jì)圖中“籃球”所對應(yīng)的圓心角的度數(shù);

(3)該校共有2500名學(xué)生,請估計(jì)全校學(xué)生喜歡足球運(yùn)動(dòng)的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,A、B的坐標(biāo)分別為(3,0),(0,2),將線段AB平移至A1B1 , 則a+b的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)A(a,3),點(diǎn)B(b,6),點(diǎn)C(5,c),AC⊥x軸,CB⊥y軸,OB在第二象限的角平分線上:

(1)寫出A,B,C三點(diǎn)坐標(biāo);
(2)求△ABC的面積;
(3)若點(diǎn)P為線段OB上動(dòng)點(diǎn),當(dāng)△BCP面積大于12小于16時(shí),求點(diǎn)P橫坐標(biāo)取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如下圖,已知兩點(diǎn)A(–1,3)、B(3,5),點(diǎn)P為x軸上的一個(gè)動(dòng)點(diǎn).
(1)求點(diǎn)A關(guān)于x軸的對稱點(diǎn)A'的坐標(biāo);
(2)P點(diǎn)在x軸上移動(dòng),求作PA+PB最小時(shí)點(diǎn)P的位置.

查看答案和解析>>

同步練習(xí)冊答案