【題目】如圖,池中心豎直水管的頂端安一個(gè)噴水頭,使噴出的拋物線形水柱在與池中心的水平距離為1m處達(dá)到最高,高度為3m,水柱落地處離池中心3m,水管的長(zhǎng)為( 。

A.2.1mB.2.2mC.2.3mD.2.25m

【答案】D

【解析】

設(shè)拋物線的解析式為y= a(x-1)2+3(0≤x≤3),將(3,0)代入求得a值,則x=0時(shí)得的y值即為水管的長(zhǎng).

解:由于在距池中心的水平距離為1m時(shí)達(dá)到最高,高度為3m,

則設(shè)拋物線的解析式為:

y=a(x-1)2+3(0≤x≤3),

代入(3,0)得,

0=a×(3-1)2+3

求得:a=

a值代入得到拋物線的解析式為:

y=-(x-1)2+3(0≤x≤3),

x=0,則y==2.25

則水管長(zhǎng)為2.25m

故選:D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】“滑塊鉸鏈”是一種用于連接窗扇和窗框,使窗戶能夠開(kāi)啟和關(guān)閉的連桿式活動(dòng)鏈接裝置(如圖1).圖2是“滑塊鉸鏈”的平面示意圖,滑軌MN安裝在窗框上,懸臂DE安裝在窗扇上,支點(diǎn)BC、D始終在一條直線上,已知托臂AC20厘米,托臂BD40厘米,支點(diǎn)C,D之間的距離是10厘米,張角∠CAB60°.

(1)求支點(diǎn)D到滑軌MN的距離(精確到1厘米)

(2)將滑塊A向左側(cè)移動(dòng)到A′,(在移動(dòng)過(guò)程中,托臂長(zhǎng)度不變,即ACAC′,BCBC)當(dāng)張角∠CA'B45°時(shí),求滑塊A向左側(cè)移動(dòng)的距離(精確到1厘米)(備用數(shù)據(jù):1.41,1.73,2.45,2.65)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC內(nèi)接于O,AB是O的直徑.PC是O的切線,C為切點(diǎn),PDAB于點(diǎn)D,交AC于點(diǎn)E.

(1)求證:∠PCE=∠PEC;

(2)若AB=10,ED=,sinA=,求PC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】中,,以點(diǎn)為圓心,為半徑,作于點(diǎn),交的延長(zhǎng)線于點(diǎn),過(guò)點(diǎn)的平行線于點(diǎn),連接、

1)試判斷的位置關(guān)系,并說(shuō)明理由;

2)當(dāng)________°時(shí),四邊形是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線yax2+bx+cab,c是常數(shù),a≠0)與x軸交于A,B兩點(diǎn),頂點(diǎn)Pm,n).給出下列結(jié)論

2a+c0

②若在拋物線上,則y1y2y3

③關(guān)于x的方程ax2+bx+k0有實(shí)數(shù)解,則kcn;

④當(dāng)n=﹣時(shí),△ABP為等腰直角三角形;

其中正確結(jié)論個(gè)數(shù)有( 。﹤(gè).

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)不透明的口袋里裝有分別標(biāo)有漢字、、的四個(gè)小球,除漢字不同之外,小球沒(méi)有任何區(qū)別,每次摸球前先攪拌均勻再摸球.

(1)若從中任取一個(gè)球,求摸出球上的漢字剛好是的概率;

(2)甲從中任取一球,不放回,再?gòu)闹腥稳∫磺,?qǐng)用樹(shù)狀圖或列表法,求甲取出的兩個(gè)球上的漢字恰能組成美麗光明的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在圓O中,直徑AB平分弦CD于點(diǎn)E,且CD=4,連接AC,OD,若∠A與∠DOB互余,則EB的長(zhǎng)是(

A.2B.4C.D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是圓O的一條弦,點(diǎn)O在線段AC上,AC=AB,OC=3,sinA=.求:(1)O的半徑長(zhǎng);(2)BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某文具店購(gòu)進(jìn)一批紀(jì)念冊(cè),每本進(jìn)價(jià)為20元,出于營(yíng)銷(xiāo)考慮,要求每本紀(jì)念冊(cè)的售價(jià)不低于20元且不高于28元,在銷(xiāo)售過(guò)程中發(fā)現(xiàn)該紀(jì)念冊(cè)每周的銷(xiāo)售量y(本)與每本紀(jì)念冊(cè)的售價(jià)x(元)之間滿足一次函數(shù)關(guān)系:當(dāng)銷(xiāo)售單價(jià)為22元時(shí),銷(xiāo)售量為36本;當(dāng)銷(xiāo)售單價(jià)為24元時(shí),銷(xiāo)售量為32本.

(1)求出y與x的函數(shù)關(guān)系式;

(2)當(dāng)文具店每周銷(xiāo)售這種紀(jì)念冊(cè)獲得150元的利潤(rùn)時(shí),每本紀(jì)念冊(cè)的銷(xiāo)售單價(jià)是多少元?

(3)設(shè)該文具店每周銷(xiāo)售這種紀(jì)念冊(cè)所獲得的利潤(rùn)為w元,將該紀(jì)念冊(cè)銷(xiāo)售單價(jià)定為多少元時(shí),才能使文具店銷(xiāo)售該紀(jì)念冊(cè)所獲利潤(rùn)最大?最大利潤(rùn)是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案