如圖,在直角梯形ABCD中,AD∥BC,∠B=90°,AG∥CD交BC于點(diǎn)G,點(diǎn)E、F分別為AG、CD的中點(diǎn),連接DE、FG.

(1)求證:四邊形DEGF是平行四邊形;
(2)當(dāng)點(diǎn)G是BC的中點(diǎn)時(shí),求證:四邊形DEGF是菱形.
證明:(1)∵AG∥DC,AD∥BC,∴四邊形AGCD是平行四邊形!郃G=DC。
∵E、F分別為AG、DC的中點(diǎn),∴GE=AG,DF=DC,即GE=DF,GE∥DF。
∴四邊形DEGF是平行四邊形。
(2)連接DG,

∵四邊形AGCD是平行四邊形,∴AD=CG。
∵G為BC中點(diǎn),∴BG=CG=AD。
∵AD∥BG,∴四邊形ABGD是平行四邊形。
∴AB∥DG。
∵∠B=90°,∴∠DGC=∠B=90°。
∵F為CD中點(diǎn),∴GF=DF=CF,即GF=DF。
∵四邊形DEGF是平行四邊形,∴四邊形DEGF是菱形。

試題分析:(1)求出平行四邊形AGCD,推出CD=AG,推出EG=DF,EG∥DF,根據(jù)平行四邊形的判定推出即可。
(2)連接DG,求出∠DGC=90°,求出DF=GF,根據(jù)菱形的判定推出即可!
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,?ABCD中,點(diǎn)E、F分別在AD、BC上,且AE=CF.求證:BE=DF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

小明、小華在一棟電梯樓前感慨樓房真高.小明說(shuō):“這樓起碼20層!”小華卻不以為然:“20層?我看沒(méi)有,數(shù)數(shù)就知道了!”小明說(shuō):“有本事,你不用數(shù)也能明白!”小華想了想說(shuō):“沒(méi)問(wèn)題!讓我們來(lái)量一量吧!”小明、小華在樓體兩側(cè)各選A、B兩點(diǎn),測(cè)量數(shù)據(jù)如圖,其中矩形CDEF表示樓體,AB=150米,CD=10米,∠A=30°,∠B=45°,(A、C、D、B四點(diǎn)在同一直線上)問(wèn):

(1)樓高多少米?
(2)若每層樓按3米計(jì)算,你支持小明還是小華的觀點(diǎn)呢?請(qǐng)說(shuō)明理由.(參考數(shù)據(jù):≈1.73,≈1.41,≈2.24)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(2013年四川廣安6分)如圖,在平行四邊形ABCD中,AE∥CF,求證:△ABE≌△CDF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,正方形ABCD的邊長(zhǎng)為4,點(diǎn)P在DC邊上且DP=1,點(diǎn)Q是AC上一動(dòng)點(diǎn),則DQ+PQ的最小值為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,梯形ABCD中,AD∥BC,AB∥DE,∠DEC=∠C,求證:梯形ABCD是等腰梯形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,邊長(zhǎng)為1的菱形ABCD中,∠DAB=60°.連結(jié)對(duì)角線AC,以AC為邊作第二個(gè)菱形ACEF,使∠FAC=60°.連結(jié)AE,再以AE為邊作第三個(gè)菱形AEGH使∠HAE=60°…按此規(guī)律所作的第n個(gè)菱形的邊長(zhǎng)是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,順次連結(jié)四邊形ABCD四邊的中點(diǎn)E、F、G、H,則四邊形EFGH的形狀一定是    

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在矩形ABCD中,將點(diǎn)A翻折到對(duì)角線BD上的點(diǎn)M處,折痕BE交AD于點(diǎn)E.將點(diǎn)C翻折到對(duì)角線BD上的點(diǎn)N處,折痕DF交BC于點(diǎn)F.

(1)求證:四邊形BFDE為平行四邊形;
(2)若四邊形BFDE為菱形,且AB=2,求BC的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案