【題目】已知⊙O的半徑為2,∠AOB=120°.
(1)點O到弦AB的距離為 ;.
(2)若點P為優(yōu)弧AB上一動點(點P不與A、B重合),設(shè)∠ABP=α,將△ABP沿BP折疊,得到A點的對稱點為A′;
①若∠α=30°,試判斷點A′與⊙O的位置關(guān)系;
②若BA′與⊙O相切于B點,求BP的長;
③若線段BA′與優(yōu)弧APB只有一個公共點,直接寫出α的取值范圍.
【答案】(1)1;(2)①點A′在⊙O上;②;③0°<α<30°或60°≤α<120°
【解析】
(1)如圖,作輔助線;證明∠AOC=60°,得到OC=1.
(2)①證明∠PAB=90°,得到PB是⊙O的直徑;證明∠PA′B=90°,即可解決問題.
②證明∠A′BP=∠ABP=60°;借助∠APB=60°,得到△PAB為正三角形,求出AB的長即可解決問題.
③直接寫出α的取值范圍即可解決問題.
解:(1)如圖,過點O作OC⊥AB于點C;
∵OA=OB,
則∠AOC=∠BOC=×120°=60°,
∵OA=2,
∴OC=1.
故答案為1.
(2)①∵∠AOB=120°
∴∠APB=∠AOB=60°,
∵∠PBA=30°,
∴∠PAB=90°,
∴PB是⊙O的直徑,
由翻折可知:∠PA′B=90°,
∴點A′在⊙O上.
②由翻折可知∠A′BP=∠ABP,
∵BA′與⊙O相切,
∴∠OBA′=90°,
∴∠ABA′=120°,
∴∠A′BP=∠ABP=60°;
∵∠APB=60°,
∴△PAB為正三角形,
∴BP=AB;
∵OC⊥AB,
∴AC=BC;而OA=2,OC=1,
∴AC=,
∴BP=AB=2.
③α的取值范圍為0°<α<30°或60°≤α<120°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一個幾何體的形狀為直三棱柱,右圖是它的主視圖和左視圖.
(1)請補畫出它的俯視圖,并標(biāo)出相關(guān)數(shù)據(jù);
(2)根據(jù)圖中所標(biāo)的尺寸(單位:厘米),計算這個幾何體的全面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙C 經(jīng)過原點且與兩坐標(biāo)軸分別交于點 A 與點 B,點 B 的坐標(biāo)為(﹣,0),M 是圓上一點,∠BMO=120°.⊙C 圓心 C 的坐標(biāo)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】淇淇和嘉嘉在學(xué)習(xí)了利用相似三角形測高之后分別測量兩個旗桿高度.
(1)如圖1所示,淇淇將鏡子放在地面上,然后后退直到她站直身子剛好能從鏡子里看到旗桿的頂端E,測得腳掌中心位置B到鏡面中心C的距離是50cm,鏡面中心C距離旗桿底部D的距離為4m,已知淇淇同學(xué)的身高是1.54m,眼睛位置A距離淇淇頭頂?shù)木嚯x是4cm,求旗桿DE 的高度.
如圖2所示,嘉嘉在某一時刻測得 1 米長的竹竿豎直放置時影長2米,在同時刻測量旗桿的影長時,旗桿的影子一部分落在地面上(BC),另一部分落在斜坡上(CD),他測得落在地面上的影長為10米,落在斜坡上的影長為米,∠DCE=45°,求旗桿AB的高度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=x2+bx的圖像如圖所示,對稱軸為x=2,若關(guān)于x的一元二次方程x2+bx-t=0(t為實數(shù))在-1<x<6的范圍內(nèi)無解,則的取值范圍是___.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A(﹣1,0)、B(2,﹣3)兩點在一次函數(shù)y1=﹣x+m與二次函數(shù)y2=ax2+bx﹣3的圖象上.
(1)求m的值和二次函數(shù)的解析式.
(2)請直接寫出使y1>y2時自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖直角坐標(biāo)系中,已知A(-8,0),B(0,6),點M在線段AB上.
(1)如圖1,如果點M是線段AB的中點,且⊙M的半徑為4,試判斷直線OB與⊙M的位置關(guān)系,并說明理由;
(2)如圖2,⊙M與x軸、y軸都相切,切點分別是點E、F,試求出點M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為維護(hù)南海主權(quán),我海軍艦艇加強對南海海域的巡航,年月日上午時,我海巡號艦艇在觀察點處觀測到其正東方向海里處有一燈塔,該艦艇沿南偏東的方向航行,時到達(dá)觀察點,測得燈塔位于其北偏西方向,求該艦艇的巡航速度?(結(jié)果保留整數(shù))
(參考數(shù)據(jù):,)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com