【題目】如圖,拋物線y=ax2+bx+c的對稱軸是x=,小亮通過觀察得出了下面四個結(jié)論:①c<0,②a﹣b+c>0,③2a﹣3b=0,④5b﹣2c<0.其中正確的有( 。
A. 1個B. 2個C. 3個D. 4個
【答案】C
【解析】
由拋物線與y軸的交點可對①進(jìn)行判斷;由于當(dāng)x=﹣1時,y>0,得到a﹣b+c>0,則可對②進(jìn)行判斷;由拋物線開口方向得到a>0,再根據(jù)對稱軸為直線x=﹣>0,得到b<0,且2a+3b=0,則可對③進(jìn)行判斷;把a=﹣b代入a﹣b+c>0可對④進(jìn)行判斷.
∵拋物線與y軸的交點在x軸下方,
∴c<0,所以①正確;
∵當(dāng)x=﹣1時,y>0,即a﹣b+c>0,所以②正確;
∵拋物線開口向上,
∴a>0,
∵拋物線的對稱軸為直線x=﹣>0,
∴b<0,2a+3b=0,所以③錯誤;
∵2a+3b=0,
∴a=﹣b,
∴﹣b﹣b+c>0,即5b﹣2c<0,所以④正確.
故選:C.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為改善生態(tài)環(huán)境,防止水土流失,某村計劃在江漢堤坡種植白楊樹,現(xiàn)甲、乙兩家林場有相同的白楊樹苗可供選擇,其具體銷售方案如下:
甲林場 | 乙林場 | ||
購樹苗數(shù)量 | 銷售單價 | 購樹苗數(shù)量 | 銷售單價 |
不超過1000棵時 | 4元/棵 | 不超過2000棵時 | 4元/棵 |
超過1000棵的部分 | 3.8元/棵 | 超過2000棵的部分 | 3.6元/棵 |
設(shè)購買白楊樹苗x棵,到兩家林場購買所需費用分別為y甲(元)、y乙(元).
(1)該村需要購買1500棵白楊樹苗,若都在甲林場購買所需費用為 元,若都在乙林場購買所需費用為 元;
(2)分別求出y甲、y乙與x之間的函數(shù)關(guān)系式;
(3)如果你是該村的負(fù)責(zé)人,應(yīng)該選擇到哪家林場購買樹苗合算,為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線y=-x+2分別交x軸、y軸于點A、B,拋物線y=﹣x2+bx+c經(jīng)過點A、B.點P是x軸上一個動點,過點P作垂直于x軸的直線分別交拋物線和直線AB于點E和點F.設(shè)點P的橫坐標(biāo)為m.
(1)點A的坐標(biāo)為 .
(2)求這條拋物線所對應(yīng)的函數(shù)表達(dá)式.
(3)點P在線段OA上時,若以B、E、F為頂點的三角形與△FPA相似,求m的值.
(4)若E、F、P三個點中恰有一點是其它兩點所連線段的中點(三點重合除外),稱E、F、P三點為“共諧點”.直接寫出E、F、P三點成為“共諧點”時m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AE與BF交于點O,點O在CG上,根據(jù)尺規(guī)作圖的痕跡,判斷下列說法不正確的是( 。
A. AE、BF是△ABC的內(nèi)角平分線
B. CG也是△ABC的一條內(nèi)角平分線
C. AO=BO=CO
D. 點O到△ABC三邊的距離相等
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在某海域,一艘海監(jiān)船在P處檢測到南偏西45°方向的B處有一艘不明船只,正沿正西方向航行,海監(jiān)船立即沿南偏西60°方向以40海里/小時的速度去截獲不明船只,經(jīng)過1.5小時,剛好在A處截獲不明船只,求不明船只的航行速度.(≈1.41,≈1.73,結(jié)果保留一位小數(shù)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一次函數(shù)y=kx+b的圖象經(jīng)過(﹣4,﹣2),(1,8)兩點.
(1)求該一次函數(shù)的表達(dá)式;
(2)如圖,該一次函數(shù)的圖象與反比例函數(shù)y=的圖象相交于點A,B,與y軸交于點C,且AB=BC,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,點E是BC上一點,連接AE,點F是AE上一點,連接FC,若∠BAE=∠EFC,CF=CD,AB:BC=3:2,AF=4,則FC的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場用2500元購進(jìn)A、B兩種新型節(jié)能臺燈共50盞,這兩種臺燈的進(jìn)價、標(biāo)價如下表所示.
類型 價格 | A型 | B型 |
進(jìn)價(元/盞) | 40 | 65 |
標(biāo)價(元/盞) | 60 | 100 |
(1)這兩種臺燈各購進(jìn)多少盞?
(2)在每種臺燈銷售利潤不變的情況下,若該商場計劃銷售這批臺燈的總利潤至少為1400元,問至少需購進(jìn)B種臺燈多少盞?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖①、圖②均是8×8的正方形網(wǎng)格,每個小正方形的頂點稱為格點,點A、B、M、N均落在格點上,在圖①、圖②給定的網(wǎng)格中按要求作圖.
(1)在圖①中的格線MN上確定一點P,使PA與PB的長度之和最小
(2)在圖②中的格線MN上確定一點Q,使∠AQM=∠BQM.
要求:只用無刻度的直尺,保留作圖痕跡,不要求寫出作法.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com