【題目】正方形ABCD的邊長是4,點P是AD邊的中點,點E是正方形邊上的一點,若△PBE是等腰三角形,則腰長為________.
【答案】2或
或
【解析】分情況討論:
(1)當PB為腰時,若P為頂點,則E點與C點重合,如圖1所示:
∵四邊形ABCD是正方形,
∴AB=BC=CD=AD=4,∠A=∠C=∠D=90°,
∵P是AD的中點,
∴AP=DP=2,
根據勾股定理得:BP==
=
;
若B為頂點,則根據PB=BE′得,E′為CD中點,此時腰長PB=;
(2)當PB為底邊時,E在BP的垂直平分線上,與正方形的邊交于兩點,即為點E;
①當E在AB上時,如圖2所示:
則BM=BP=
,
∵∠BME=∠A=90°,∠MEB=∠ABP,
∴△BME∽△BAP,
∴,即
,
∴BE=;
②當E在CD上時,如圖3所示:
設CE=x,則DE=4x,
根據勾股定理得:BE2=BC2+CE2,PE2=DP2+DE2,
∴42+x2=22+(4x)2,
解得:x=,
∴CE=,
∴BE= =
=
;
綜上所述:腰長為: ,或
,或
;
故答案為: ,或
,或
.
科目:初中數學 來源: 題型:
【題目】如圖矩形ABCD中,AD=5,AB=7,點E為DC上一個動點,把△ADE沿AE折疊,當點D的對應點D′落在∠ABC的角平分線上時,DE的長為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1所示,在正方形ABCD和正方形CGEF中,點B、C、G在同一條直線上,M是線段AE的中點,DM的延長線交EF于點N,連接FM,易證:DM=FM,DM⊥FM(無需寫證明過程)
(1)如圖2,當點B、C、F在同一條直線上,DM的延長線交EG于點N,其余條件不變,試探究線段DM與FM有怎樣的關系?請寫出猜想,并給予證明;
(2)如圖3,當點E、B、C在同一條直線上,DM的延長線交CE的延長線于點N,其余條件不變,探究線段DM與FM有怎樣的關系?請直接寫出猜想.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD內接于⊙O,BC是直徑,∠BAD=120°,AB=AD.
(1)、求證:四邊形ABCD是等腰梯形;(2)、已知AC=6,求陰影部分的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在頻數分布直方圖中,有11個小長方形,若中間一個小長方形的面積等于其它10個小長方形面積的和的 ,且數據有160個,則中間一組的頻數為( )
A.32
B.0.2
C.40
D.0.25
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com