【題目】分解因式a2-2a=______________.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠1+∠2=180°,∠3=∠B,試判斷∠AED與∠C的大小關(guān)系,并證明你的結(jié)論.
解:∠C與∠AED相等,理由如下:
∵∠1+∠2=180°(已知),∠1+∠DFE=180°(鄰補角定義)
∴∠2= . ( . ),
∴AB∥EF( . )
∴∠3= . ( . )
又∠B=∠3(已知)
∴∠B= . (等量代換)
∴DE∥BC( . )
∴∠C=∠AED( . ).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】高速公路的同一側(cè)有A、B兩城鎮(zhèn),如圖,它們到高速公路所在直線MN的距離分別為AA′=2 km,BB′=4 km,A′B′=8 km.要在高速公路上A′、B′之間建一個出口P,使A、B兩城鎮(zhèn)到P的距離之和最。筮@個最短距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在學(xué)習(xí)了利用尺規(guī)作一個角的平分線后,愛鉆研的小聰發(fā)現(xiàn),只有一把刻度尺也可以作出一個角的平分線.她是這樣作的(如圖):
(1)分別在∠AOB的兩邊OA,OB上各取一點C,D,使得OC=OD.
(2)連結(jié)CD,并量出CD的長度,取CD的中點E.
(3)過O,E兩點作射線OE,則OE就是∠AOB的平分線.
請你說出小聰這樣作的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+2交x軸于A(﹣1,0),B(4,0)兩點,交y軸于點C,與過點C且平行于x軸的直線交于另一點D,點P是拋物線上一動點.
(1)求拋物線解析式及點D坐標(biāo);
(2)點E在x軸上,若以A,E,D,P為頂點的四邊形是平行四邊形,求此時點P的坐標(biāo);
(3)過點P作直線CD的垂線,垂足為Q,若將△CPQ沿CP翻折,點Q的對應(yīng)點為Q′.是否存在點P,使Q′恰好落在x軸上?若存在,求出此時點P的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,O為坐標(biāo)原點.
(1)已知點A(3,1),連接OA,平移線段OA,使點O落在點B.設(shè)點A落在點C,作如下探究:
探究一:若點B的坐標(biāo)為(1,2),請在圖①中作出平移后的圖形,則點C的坐標(biāo)是______;連接AC、BO,請判斷O、A、C、B四點構(gòu)成的圖形的形狀,并說明理由;
探究二:若點B的坐標(biāo)為(6,2),如圖②,判斷O、A、B、C四點構(gòu)成的圖形的形狀.
(2)通過上面的探究,請直接回答下列問題:
①若已知三點A(a,b)、B(c,d)、C(a+c,b+d)(點A、B、C都不與原點O重合),順次連接點O、A、C、B,請判斷所得圖形的形狀;
②在①的條件下,如果所得圖形是菱形或者正方形,請選擇一種情況,寫出a、b、c、d應(yīng)滿足的關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正方形ABCD的邊長是4,點P是AD邊的中點,點E是正方形邊上的一點,若△PBE是等腰三角形,則腰長為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有下列判定,其中正確的有( ) ①若∠1=∠3,則AD∥BC;
②若AD∥BC,則∠1=∠2=∠3;
③若∠1=∠3,AD∥BC,則∠1=∠2;
④若∠C+∠3+∠4=180°,則AD∥BC.
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com