【題目】老師隨機抽查了本學期學生讀課外書冊數(shù)的情況,繪制成條形圖(圖1)和不完整的扇形圖(圖2),其中條形圖被墨跡遮蓋了一部分.

(1)求條形圖中被遮蓋的數(shù),并寫出冊數(shù)的中位數(shù);

(2)在所抽查的學生中隨機選一人談讀書感想,求選中讀書超過5冊的學生的概率;

(3)隨后又補查了另外幾人,得知最少的讀了6冊,將其與之前的數(shù)據(jù)合并后,發(fā)現(xiàn)冊數(shù)的中位數(shù)沒改變,則最多補查了   人.

【答案】(1)條形圖中被遮蓋的數(shù)為9,冊數(shù)的中位數(shù)為5;(2)選中讀書超過5冊的學生的概率為;(3)3

【解析】1)用讀書為6冊的人數(shù)除以它所占的百分比得到調(diào)查的總?cè)藬?shù),再用總?cè)藬?shù)分別減去讀書為4冊、6冊和7冊的人數(shù)得到讀書5冊的人數(shù),然后根據(jù)中位數(shù)的定義求冊數(shù)的中位數(shù);

(2)用讀書為6冊和7冊的人數(shù)和除以總?cè)藬?shù)得到選中讀書超過5冊的學生的概率;

(3)根據(jù)中位數(shù)的定義可判斷總?cè)藬?shù)不能超過27,從而得到最多補查的人數(shù).

1)抽查的學生總數(shù)為6÷25%=24(人),

讀書為5冊的學生數(shù)為24﹣5﹣6﹣4=9(人),

所以條形圖中被遮蓋的數(shù)為9,冊數(shù)的中位數(shù)為5;

(2)選中讀書超過5冊的學生的概率=;

(3)因為4冊和5冊的人數(shù)和為14,中位數(shù)沒改變,所以總?cè)藬?shù)不能超過27,即最多補查了3人,

故答案為:3.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線yax2+bxa0)過點E8,0),矩形ABCD的邊AB在線段OE上(點A在點B的左側(cè)),點C、D在拋物線上,∠BAD的平分線AMBC于點M,點NCD的中點,已知OA2,且OAAD13.

1)求拋物線的解析式;

2F、G分別為x軸,y軸上的動點,順次連接M、NG、F構(gòu)成四邊形MNGF,求四邊形MNGF周長的最小值;

3)在x軸下方且在拋物線上是否存在點P,使△ODPOD邊上的高為?若存在,求出點P的坐標;若不存在,請說明理由;

4)矩形ABCD不動,將拋物線向右平移,當平移后的拋物線與矩形的邊有兩個交點K、L,且直線KL平分矩形的面積時,求拋物線平移的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】《九章算術(shù)》中記載:今有甲乙二人持錢不知其數(shù),甲得乙半而錢五十,乙得甲太半而錢亦五十.問甲、乙持錢各幾何?譯文:今有甲乙二人,不知其錢包里有多少錢.若乙把自己一半的錢給甲,則甲的錢數(shù)為50錢;而甲把自己的錢給乙,則乙的錢數(shù)也為50錢.問甲、乙各有多少錢?設(shè)甲、乙原有錢數(shù)分別為、,下列所列方程組正確的是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為鼓勵市民節(jié)約用水,某市自來水公司按分段收費標準收費,右圖反映的是每月收水費y(元)與用水量x(噸)之間的函數(shù)關(guān)系

1)小紅家五月份用水8噸,應(yīng)交水費_____元;

2)按上述分段收費標準,小紅家三、四月份分別交水費36元和19.8元,問四月份比三月份節(jié)約用水多少噸?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】觀察猜想:

1)如圖1,在RtABC中,∠ACB90°,∠BAC30°,點D與點C重合,點E在斜邊AB上,連接DE,且DEAE,將線段DE繞點D順時針旋轉(zhuǎn)90°得到線段DF,連接EF,則______,sinADE________,

探究證明:

2)在(1)中,如果將點D沿CA方向移動,使CDAC,其余條件不變,如圖2,上述結(jié)論是否保持不變?若改變,請求出具體數(shù)值:若不變,請說明理由.

拓展延伸

3)如圖3,在△ABC中,∠ACB90°,∠CABa,點D在邊AC的延長線上,EAB上任意一點,連接DEEDnAE,將線段DE繞著點D順時針旋轉(zhuǎn)90°至點F,連接EF.求sinADE的值分別是多少?(請用含有n,a的式子表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列說法中正確的是(

A.同一平面內(nèi),過一點有且只有一條直線與已知直線平行

B.三張分別畫有菱形、等邊三角形、圓的卡片,從中隨機抽取一張,恰好抽到中心對稱圖形卡片的概率是

C.一組對邊平行,一組對邊相等的四邊形是平行四邊形

D.時,關(guān)于的方程有實數(shù)根

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,以直線為對稱軸的拋物線與直線交于,兩點,與軸交于,直線軸交于點.

(1)求拋物線的函數(shù)表達式;

(2)設(shè)直線與拋物線的對稱軸的交點為是拋物線上位于對稱軸右側(cè)的一點,若,且的面積相等,求點的坐標;

(3)若在軸上有且只有一點,使,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中,點,依次是邊的四等分點,點,,依次是邊的四等分點,分別以,為邊向下剪三個寬相等的矩形,如圖所示.若圖中空白部分的面積和為,則圖中陰影部分的面積和是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線yax2+bx+ca<0)與x軸交于點A(﹣1,0),與y軸的交點在(0,2),(0,3)之間(包含端點),頂點坐標為(1,n),則下列結(jié)論:

①4a+2b<0;

②﹣1≤a;

對于任意實數(shù)ma+bam2+bm總成立;

關(guān)于x的方程ax2+bx+cn﹣1有兩個不相等的實數(shù)根.

其中結(jié)論正確的個數(shù)為( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步練習冊答案