我市某工藝廠為配合北京奧運(yùn),設(shè)計(jì)了一款成本為20元/件的工藝品投放市場(chǎng)進(jìn)行試銷.經(jīng)過調(diào)查,得到如下數(shù)據(jù):

銷售單價(jià)(元/件)

……

30

40

50

60

……

每天銷售量(件)

……

500

400

300

200

……

    (1)把上表中、的各組對(duì)應(yīng)值作為點(diǎn)的坐標(biāo),在下面的平面直角坐標(biāo)系中描出相應(yīng)的點(diǎn),猜想的函數(shù)關(guān)系,并求出函數(shù)關(guān)系式;

    (2)當(dāng)銷售單價(jià)定為多少時(shí),工藝廠試銷該工藝品每天獲得的利潤(rùn)最大?最大利潤(rùn)是多少?

       (利潤(rùn)=銷售總價(jià)-成本總價(jià))

    (3)當(dāng)?shù)匚飪r(jià)部門規(guī)定,該工藝品銷售單價(jià)最高不能超過45元/件,那么銷售單價(jià)定為多少時(shí),工藝廠試銷該工藝品每天獲得的利潤(rùn)最大?

      解:

x

 
 


解:(1)畫圖略;  

由圖可猜想是一次函數(shù)關(guān)系,       

設(shè)這個(gè)一次函數(shù)為= +(k≠0),

∵這個(gè)一次函數(shù)的圖象經(jīng)過(30,500)、(40,400)這兩點(diǎn),

解得 

∴函數(shù)關(guān)系式是:=﹣10+800.

(2)設(shè)工藝廠試銷該工藝品每天獲得的利潤(rùn)是W元,依題意得  

     W=(-20)(﹣10+800)

      =-10+1000-16000

      =-10(-50)+9000

     ∴當(dāng)=50時(shí),W有最大值9000.

所以,當(dāng)銷售單價(jià)定為50元∕件時(shí),工藝廠試銷該工藝品每天獲得的利潤(rùn)最大,最大利潤(rùn)是9000元. 8分

(3)對(duì)于函數(shù) W=﹣10(-50)+9000,當(dāng)≤45時(shí),

W的值隨著值的增大而增大,

∴銷售單價(jià)定為45元∕件時(shí),工藝廠試銷該工藝品每天獲得的利潤(rùn)最大.····· 10分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

我市某工藝廠為配合北京奧運(yùn),設(shè)計(jì)了一款成本為20元∕件的工藝品投放市場(chǎng)進(jìn)行試銷.經(jīng)過調(diào)查,得到如下數(shù)據(jù):
銷售單價(jià)x(元/件) 30 40 50 60
每天銷售量y(件) 500 400 300 200
(1)把上表中x、y的各組對(duì)應(yīng)值作為點(diǎn)的坐標(biāo),在下面的平面直角坐標(biāo)系中描出相應(yīng)的點(diǎn),猜想y與x的函數(shù)關(guān)系,并求出函數(shù)關(guān)系式;
(2)當(dāng)銷售單價(jià)定為多少時(shí),工藝廠試銷該工藝品每天獲得的利潤(rùn)最大?最大利潤(rùn)是多少?
(利潤(rùn)=銷售總價(jià)-成本總價(jià));
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

我市某工藝廠為配合北京奧運(yùn),設(shè)計(jì)了一款成本為20元∕件的工藝品投放市場(chǎng)進(jìn)行試銷.經(jīng)過調(diào)查,得到如下數(shù)據(jù):
銷售單價(jià)x(元/件) 30 40 50 60
每天銷售量y(件) 500 400 300 200
(1)把上表中x、y的各組對(duì)應(yīng)值作為點(diǎn)的坐標(biāo),在下面的平面直角坐標(biāo)系中描出相應(yīng)的點(diǎn),猜想y與x的函數(shù)關(guān)系,并求出函數(shù)關(guān)系式;
(2)當(dāng)銷售單價(jià)定為多少時(shí),工藝廠試銷該工藝品每天獲得的利潤(rùn)最大?最大利潤(rùn)是多少?(利潤(rùn)=銷售總價(jià)-成本總價(jià))
(3)當(dāng)?shù)匚飪r(jià)部門規(guī)定,該工藝品銷售單價(jià)最高不能超過45元/件,那么銷售單價(jià)定為多少時(shí),工藝廠試銷該工藝品每天獲得的利潤(rùn)最大?
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•廣東模擬)我市某工藝廠為配合北京奧運(yùn),設(shè)計(jì)了一款成本為20元∕件的工藝品投放市場(chǎng)進(jìn)行試銷.經(jīng)過調(diào)查,得到如下數(shù)據(jù):
銷售單價(jià)x(元∕件) 30 40 50 60
每天銷售量y(件) 500 400 300 200
(1)猜想y與x的函數(shù)關(guān)系,并求出函數(shù)關(guān)系式;
(2)當(dāng)銷售單價(jià)定為多少時(shí),試銷該工藝品每天獲得的利潤(rùn)最大?最大利潤(rùn)是多少?
(3)銷售部門規(guī)定該工藝品單價(jià)不得超過48元,要想每天獲得8750元利潤(rùn),單價(jià)應(yīng)定為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009-2010學(xué)年江蘇省泰州市姜堰市溱潼實(shí)驗(yàn)中學(xué)九年級(jí)(上)第二次階段性練習(xí)(解析版) 題型:解答題

我市某工藝廠為配合北京奧運(yùn),設(shè)計(jì)了一款成本為20元∕件的工藝品投放市場(chǎng)進(jìn)行試銷.經(jīng)過調(diào)查,得到如下數(shù)據(jù):
銷售單價(jià)x(元/件)30405060
每天銷售量y(件)500400300200
(1)把上表中x、y的各組對(duì)應(yīng)值作為點(diǎn)的坐標(biāo),在下面的平面直角坐標(biāo)系中描出相應(yīng)的點(diǎn),猜想y與x的函數(shù)關(guān)系,并求出函數(shù)關(guān)系式;
(2)當(dāng)銷售單價(jià)定為多少時(shí),工藝廠試銷該工藝品每天獲得的利潤(rùn)最大?最大利潤(rùn)是多少?(利潤(rùn)=銷售總價(jià)-成本總價(jià))
(3)當(dāng)?shù)匚飪r(jià)部門規(guī)定,該工藝品銷售單價(jià)最高不能超過45元/件,那么銷售單價(jià)定為多少時(shí),工藝廠試銷該工藝品每天獲得的利潤(rùn)最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年湖北省黃岡市中考適應(yīng)性考試數(shù)學(xué)試卷(十四)(解析版) 題型:解答題

我市某工藝廠為配合北京奧運(yùn),設(shè)計(jì)了一款成本為20元∕件的工藝品投放市場(chǎng)進(jìn)行試銷.經(jīng)過調(diào)查,得到如下數(shù)據(jù):
銷售單價(jià)x(元/件)30405060
每天銷售量y(件)500400300200
(1)把上表中x、y的各組對(duì)應(yīng)值作為點(diǎn)的坐標(biāo),在下面的平面直角坐標(biāo)系中描出相應(yīng)的點(diǎn),猜想y與x的函數(shù)關(guān)系,并求出函數(shù)關(guān)系式;
(2)當(dāng)銷售單價(jià)定為多少時(shí),工藝廠試銷該工藝品每天獲得的利潤(rùn)最大?最大利潤(rùn)是多少?(利潤(rùn)=銷售總價(jià)-成本總價(jià))
(3)當(dāng)?shù)匚飪r(jià)部門規(guī)定,該工藝品銷售單價(jià)最高不能超過45元/件,那么銷售單價(jià)定為多少時(shí),工藝廠試銷該工藝品每天獲得的利潤(rùn)最大?

查看答案和解析>>

同步練習(xí)冊(cè)答案