【題目】如圖,在矩形ABCD中,AB=8,AD=6,點(diǎn)M為對(duì)角線AC上的一個(gè)動(dòng)點(diǎn)(不與端點(diǎn)A,C重合),過點(diǎn)M作ME⊥AD,MF⊥DC,垂足分別為E,F(xiàn),則四邊形EMFD面積的最大值為( )
A. 6 B. 12 C. 18 D. 24
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖,矩形OABC的長(zhǎng)OA=,寬OC=1,將△AOC沿AC翻折得△APC.
(1)求∠PCB的度數(shù);
(2)若P,A兩點(diǎn)在拋物線y=﹣x2+bx+c上,求b,c的值,并說明點(diǎn)C在此拋物線上;
(3)(2)中的拋物線與矩形OABC邊CB相交于點(diǎn)D,與x軸相交于另外一點(diǎn)E,若點(diǎn)M是x軸上的點(diǎn),N是y軸上的點(diǎn),以點(diǎn)E、M、D、N為頂點(diǎn)的四邊形是平行四邊形,試求點(diǎn)M、N的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,過點(diǎn)B作射線BB1∥AC.動(dòng)點(diǎn)D從點(diǎn)A出發(fā)沿射線AC方向以每秒5個(gè)單位的速度運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)E從點(diǎn)C沿射線AC方向以每秒3個(gè)單位的速度運(yùn)動(dòng).過點(diǎn)D作DH⊥AB于H,過點(diǎn)E作EF⊥AC交射線BB1于F,G是EF中點(diǎn),連接DG.設(shè)點(diǎn)D運(yùn)動(dòng)的時(shí)間為t秒.
(1)當(dāng)t為何值時(shí),AD=AB,并求出此時(shí)DE的長(zhǎng)度;
(2)當(dāng)△DEG與△ACB相似時(shí),求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】方格紙中每個(gè)小正方形的邊長(zhǎng)都是單位1,△OAB在平面直角坐標(biāo)系中的位置如圖所示.解答問題:
(1)請(qǐng)按要求對(duì)△ABO作如下變換:
①將△OAB向下平移2個(gè)單位,再向左平移3個(gè)單位得到△O1A1B1;
②以點(diǎn)O為位似中心,位似比為2:1,將△ABC在位似中心的異側(cè)進(jìn)行放大得到△OA2B2.
(2)寫出點(diǎn)A1,A2的坐標(biāo): , ;
(3)△OA2B2的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線y=-x+3與x軸、y軸分別交于A,B兩點(diǎn),拋物線y=-x2+bx+c經(jīng)過B點(diǎn),且與x軸交于C,D兩點(diǎn)(點(diǎn)C在左側(cè)),且C(-3,0).
(1)求拋物線的解析式;
(2)平移直線AB,使得平移后的直線與拋物線分別交于點(diǎn)D,E,與y軸交于點(diǎn)F,連接CE,CF,求△CEF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在△ABC中,AB=AC,DE∥BC,點(diǎn)F在邊AC上,DF與BE相交于點(diǎn)G,且∠EDF=∠ABE.
求證:(1)△DEF∽△BDE;(2)DGDF=DBEF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知點(diǎn)M,N的坐標(biāo)分別為(﹣1,2),(2,1),若拋物線y=ax2﹣x+2(a≠0)與線段MN有兩個(gè)不同的交點(diǎn),則a的取值范圍是( )
A. a≤﹣1或≤a< B. ≤a<
C. a≤或a> D. a≤﹣1或a≥
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)四邊形被一條對(duì)角線分割成兩個(gè)三角形,如果被分割的兩個(gè)三角形相似,我們把這條對(duì)角線稱為該四邊形的為相似對(duì)角線。
(1)如圖1,正方形ABCD的邊長(zhǎng)為4,E為AD的中點(diǎn),AF=1,連結(jié)CE,CF,求證:EF為四邊形AECF的相似對(duì)角線。
(2)在四邊形ABCD中,∠BAD=120°,AB=3,AC=,AC平分∠BAD,且AC是四邊形ABCD的相似對(duì)角線,求BD的長(zhǎng)。
(3)如圖2,在矩形ABCD中,AB=6,BC=4,點(diǎn)E是線段AB(不取端點(diǎn)A,B)上的一個(gè)動(dòng)點(diǎn),點(diǎn)F是射線AD上的一個(gè)動(dòng)點(diǎn),若EF是四邊形AECF的相似對(duì)角線,求BE的長(zhǎng).(直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,方格紙中每個(gè)小正方形的邊長(zhǎng)都是1個(gè)單位長(zhǎng)度,Rt△ABC的三個(gè)頂點(diǎn)A(-2,2),B(0,5),C(0,2).
(1)將△ABC以點(diǎn)C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,得到△A1B1C,請(qǐng)畫出△A1B1C的圖形.
(2)平移△ABC,使點(diǎn)A的對(duì)應(yīng)點(diǎn)A2坐標(biāo)為(-2,-6),請(qǐng)畫出平移后對(duì)應(yīng)的△A2B2C2的圖形.
(3)若將△A1B1C繞某一點(diǎn)旋轉(zhuǎn)可得到△A2B2C2,請(qǐng)直接寫出旋轉(zhuǎn)中心的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com