【題目】如圖,在Rt△ABC中,∠ABC=90°,以CB為半徑作⊙C,交AC于點D,交AC的延長線于點E,連接ED,BE.

(1)求證:△ABD∽△AEB;

(2)當(dāng) = 時,求tanE;

(3)在(2)的條件下,作∠BAC的平分線,與BE交于點F,若AF=2,求⊙C的半徑.

【答案】(1)證明見解析;(2);(3).

【解析】

(1)要證明△ABD∽△AEB,已經(jīng)有一組對應(yīng)角是公共角,只需要再找出另一組對應(yīng)角相等即可;(2)由于AB:BC=4:3,可設(shè)AB=4,BC=3,求出AC的值,再利用(1)中結(jié)論可得AB2=ADAE,進而求出AE的值,所以tanE=;(3)設(shè)AB=4x,BC=3x,由于已知AF的值,構(gòu)造直角三角形后利用勾股定理列方程求出x的值,即可知道半徑3x的值.

(1)證明:∵∠ABC=90°,

∴∠ABD=90°﹣∠DBC,

由題意知:DE是直徑,

∴∠DBE=90°,

∴∠E=90°﹣∠BDE,

∵BC=CD,

∴∠DBC=∠BDE,

∴∠ABD=∠E,

∵∠A=∠A,

∴△ABD∽△AEB;

(2)解:∵AB:BC=4:3,

∴設(shè)AB=4,BC=3,

∴AC= =5,

∵BC=CD=3,

∴AD=AC﹣CD=5﹣3=2,

由(1)可知:△ABD∽△AEB,

,

∴AB2=ADAE,

∴42=2AE,

∴AE=8,

在Rt△DBE中

tanE= = =

(3)過點F作FM⊥AE于點M,

∵AB:BC=4:3,

∴設(shè)AB=4x,BC=3x,

∴由(2)可知;AE=8x,AD=2x,

∴DE=AE﹣AD=6x,

∵AF平分∠BAC,

,

,

∵tanE=

∴cosE= ,sinE=

∴BE= ,

∴EF= BE= ,

∴sinE= = ,

∴MF= ,

∵tanE=

∴ME=2MF= ,

∴AM=AE﹣ME=

∵AF2=AM2+MF2 ,

∴4= + ,

∴x=

∴⊙C的半徑為:3x=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC 中, D、E是斜邊BC上兩點,且DAE=45°,將繞點順時針旋轉(zhuǎn)90后,得到,連接.列結(jié)論:

①△ADC≌△AFB;②△ ≌△;③△≌△;

其中正確的是( )

A. ②④ B. ①④ C. ②③ D. ①③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O的直徑,D為弦BC的中心,連接OD并延長交過點C的切線于點P,連接AC.求證:△CPD∽△ABC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面材料:

如圖,把沿直線平行移動線段的長度,可以變到的位置;

如圖,以為軸,把翻折,可以變到的位置;

如圖,以點為中心,把旋轉(zhuǎn),可以變到的位置.

像這樣,其中一個三角形是由另一個三角形按平行移動、翻折、旋轉(zhuǎn)等方法變成的.這種只改變位置,不改變形狀大小的圖形變換,叫做三角形的全等變換.

回答下列問題:

在圖中,可以通過平行移動、翻折、旋轉(zhuǎn)中的哪一種方法怎樣變化,使變到的位置;

指圖中線段之間的關(guān)系,為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線l:y=kx和拋物線C:y=ax2+bx+1.

1當(dāng)k=1,b=1時,拋物線C:y=ax2+bx+1的頂點在直線l:y=kx上,求a的值;

2若把直線l向上平移k2+1個單位長度得到直線r,則無論非零實數(shù)k取何值,直線r與拋物線C都只有一個交點;

(i)求此拋物線的解析式;

(ii)P是此拋物線上任一點,過點PPQy軸且與直線y=2交于點Q,O為原點,

求證:OP=PQ.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(7分)如圖,ABC中,ACB=90°,D.E分別是BC、BA的中點,聯(lián)結(jié)DE,F(xiàn)在DE延長線上,且AF=AE.

(1)求證:四邊形ACEF是平行四邊形;

(2)若四邊形ACEF是菱形,求B的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,點D在邊BC上,連接AD,將線段AD繞點A逆時針旋轉(zhuǎn)到AE,使得∠DAE=∠BAC,連接DE交AC于F,請寫出圖中一對相似的三角形:____(只要寫出一對即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線y=﹣x+4與反比例函數(shù)y=的圖象相交于點A(﹣2,a),并且與x軸相交于點B.

(1)求a的值;

(2)求反比例函數(shù)的表達式;

(3)求AOB的面積;

(4)根據(jù)圖象寫出使一次函數(shù)的值大于反比例函數(shù)的值的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】四邊形OBCD中的三個頂點在⊙O上,點A是⊙O上的一個動點(不與點B、C、D重合)。若四邊形OBCD是平行四邊形時,那么的數(shù)量關(guān)系是________________.

查看答案和解析>>

同步練習(xí)冊答案