【題目】如圖,點(diǎn)A、F、C、D在同一條直線上,已知AF=DC,∠A=∠D,BC∥EF,求證:AB=DE.
【答案】證明見(jiàn)解析.
【解析】試題分析:欲證明AB=DE,只要證明△ABC≌△DEF即可.
試題解析:∵AF=CD,
∴AC=DF,
∵BC∥EF,
∴∠ACB=∠DFE,
在△ABC和△DEF中,
,
∴△ABC≌△DEF(ASA),
∴AB=DE.
考點(diǎn):全等三角形的判定與性質(zhì).
【題型】解答題
【結(jié)束】
25
【題目】如圖, ,AE=BD,點(diǎn)D在AC邊上, ,AE和BD相交于點(diǎn)O.
(1)求證:△AEC≌△BED;
(2)若,求BDE的度數(shù).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線y=ax2+c與x軸交于A、B兩點(diǎn)(A在B的左邊),與y軸交于點(diǎn)C,拋物線上有一動(dòng)點(diǎn)P
(1)若A(﹣2,0),C(0,﹣4)
①求拋物線的解析式;
②在①的情況下,若點(diǎn)P在第四象限運(yùn)動(dòng),點(diǎn)D(0,﹣2),以BD、BP為鄰邊作平行四邊形BDQP,求平行四邊形BDQP面積的取值范圍.
(2)若點(diǎn)P在第一象限運(yùn)動(dòng),且a<0,連接AP、BP分別交y軸于點(diǎn)E、F,則問(wèn) 是否與a,c有關(guān)?若有關(guān),用a,c表示該比值;若無(wú)關(guān),求出該比值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】高速路上因趕時(shí)間超速而頻頻發(fā)生交通事故,這樣給自己和他人的生命安全帶來(lái)直接影響,為了解車速情況,一名執(zhí)法交警在高速路上隨機(jī)測(cè)試了6個(gè)小轎車的車速情況記錄如下:
車序號(hào) | 1 | 2 | 3 | 4 | 5 | 6 |
車速(千米/時(shí)) | 100 | 95 | 106 | 100 | 120 | 100 |
則這6輛車車速的眾數(shù)和中位數(shù)(單位:千米/時(shí))分別是( )
A.100,95
B.100,100
C.102,100
D.100,103
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,邊長(zhǎng)為a的等邊△ACB中,E是對(duì)稱軸AD上一個(gè)動(dòng)點(diǎn),連EC,將線段EC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)60°得到MC,連DM,則在點(diǎn)E運(yùn)動(dòng)過(guò)程中,DM的最小值是_____。
【答案】1.5
【解析】試題分析:取AC的中點(diǎn)G,連接EG,根據(jù)等邊三角形的性質(zhì)可得CD=CG,再求出∠DCF=∠GCE,根據(jù)旋轉(zhuǎn)的性質(zhì)可得CE=CF,然后利用“邊角邊”證明△DCF和△GCE全等,再根據(jù)全等三角形對(duì)應(yīng)邊相等可得DF=EG,然后根據(jù)垂線段最短可得EG⊥AD時(shí)最短,再根據(jù)∠CAD=30°求解即可.
解:如圖,取AC的中點(diǎn)G,連接EG,
∵旋轉(zhuǎn)角為60°,
∴∠ECD+∠DCF=60°,
又∵∠ECD+∠GCE=∠ACB=60°,
∴∠DCF=∠GCE,
∵AD是等邊△ABC的對(duì)稱軸,
∴CD=BC,
∴CD=CG,
又∵CE旋轉(zhuǎn)到CF,
∴CE=CF,
在△DCF和△GCE中,
,
∴△DCF≌△GCE(SAS),
∴DF=EG,
根據(jù)垂線段最短,EG⊥AD時(shí),EG最短,即DF最短,
此時(shí)∵∠CAD=×60°=30°,AG=AC=×6=3,
∴EG=AG=×3=1.5,
∴DF=1.5.
故答案為:1.5.
考點(diǎn):旋轉(zhuǎn)的性質(zhì);等邊三角形的性質(zhì).
【題型】填空題
【結(jié)束】
19
【題目】分解因式:
(1) ; (2)9(m+n)2﹣16(m﹣n)2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】先化簡(jiǎn),再求值: ,其中x是不等式組的整數(shù)解.
【答案】4(x﹣1),4.
【解析】試題分析:解不等式組,先求出滿足不等式組的整數(shù)解.化簡(jiǎn)分式,把不等式組的整數(shù)解代入化簡(jiǎn)后的分式,求出其值.
試題解析:解不等式組,得1<x<3,
又∵x為整數(shù),∴x=2.
原式
∴原式=4×2-4=4.
【題型】解答題
【結(jié)束】
23
【題目】如圖,已知A(0,4),B(-2,2),C(3,0).
(1)作△ABC關(guān)于x軸對(duì)稱的△A1B1C1;
(2)寫出點(diǎn)A1,B1,C1的坐標(biāo);
(3)△A1B1C1的面積S△A1B1C1=______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】請(qǐng)仔細(xì)閱讀下面材料,然后解決問(wèn)題:
在分式中,對(duì)于只含有一個(gè)字母的分式,當(dāng)分子的次數(shù)大于或等于分母的次數(shù)時(shí),我們稱之為“假分式”.例如: , ;當(dāng)分子的次數(shù)小于分母的次數(shù)時(shí),我們稱之為“真分式”,例如: , .我們知道,假分?jǐn)?shù)可以化為帶分?jǐn)?shù),例如: ,類似的,假分式也可以化為“帶分式”(整式與真分式和的形式),例如: .
(1)將分式化為帶分式;
(2)當(dāng)x取哪些整數(shù)值時(shí),分式的值也是整數(shù)?
(3)當(dāng)x的值變化時(shí),分式的最大值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB=AC,∠A=36°,AB的中垂線交AC于點(diǎn)E,交AB于點(diǎn)D,下面4個(gè)結(jié)論:
①射線BE是∠ABC的平分線;②△BCE是等腰三角形;③△ABE是等腰三角形;④△ADE≌△BDE;
(1)判斷其中正確的結(jié)論是哪幾個(gè)?
(2)從你認(rèn)為是正確的結(jié)論中選一個(gè)加以說(shuō)明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖1,已知:在△ABC中,∠BAC=90°,AB=AC,直線m經(jīng)過(guò)點(diǎn)A,BD⊥直線m,CE⊥直線m,垂足分別為點(diǎn)D、E.證明:DE=BD+CE.
(2)如圖2,將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點(diǎn)都在直線m上,并且∠BDA=∠AEC=∠BAC=α,其中α為任意銳角或鈍角.請(qǐng)問(wèn)結(jié)論DE=BD+CE是否成立?若成立,請(qǐng)給出證明;若不成立,請(qǐng)說(shuō)明理由.
(3)拓展與應(yīng)用:如圖3,D、E是D、A、E三點(diǎn)所在直線m上的兩動(dòng)點(diǎn)(D、A、E三點(diǎn)
互不重合),點(diǎn)F為∠BAC平分線上的一點(diǎn),且△ABF和△ACF均為等邊三角形,連接BD、CE,若∠BDA=∠AEC=∠BAC,試判斷△DEF的形狀.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線AB交x軸于點(diǎn)A(a,0),交y軸于點(diǎn)B(0,b),且a、b滿足.
(1)點(diǎn)A的坐標(biāo)為 ;點(diǎn)B的坐標(biāo)為 ;
(2)如圖1,若點(diǎn)C的坐標(biāo)為(-3,-2),且BE⊥AC于點(diǎn)E,OD⊥OC交BE延長(zhǎng)線于D,試求點(diǎn)D的坐標(biāo);
(3)如圖2,M、N分別為OA、OB邊上的點(diǎn),OM=ON,OP⊥AN交AB于點(diǎn)P,過(guò)點(diǎn)P 作PG⊥BM,交AN的延長(zhǎng)線于點(diǎn)G,請(qǐng)寫出線段AG、OP與PG之間的數(shù)量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com