【題目】如圖,在正方形中,點在對角線上,點在邊上,連接、,交對角線于點,且.
(1)求證:;
(2)試判斷和的位置關(guān)系,并說明理由.
【答案】(1)見解析;(2),見解析
【解析】
(1)由題意可知先證,再證明,根據(jù)全等三角形的對應(yīng)邊相等即可得出結(jié)論;
(2)解法一:根據(jù)題意先證明,得出對應(yīng)角相等,進而得出,進行分析即可證出和的位置關(guān)系;
解法二:由題意根據(jù)正方形的性質(zhì)以及相似三角形的判定及性質(zhì)進行分析判斷即可.
解:(1)證明:在正方形中,
∵,
∴,
∵,
∴,
∴.
在和中,,
∴,
∴.
(2)解法一:,理由如下:
在正方形中,,
∴,
在和中,,
∴,
∴,
∵,
∴,
∴.
解法二:,理由如下:
在正方形中,
∵,
∴,
∵,
∴,
又∵在正方形中,,
∴,
又∵,
∴,
∴,
∴.
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,拋物線y=﹣x2﹣2x+3與x軸從左到右交于A、B兩點,與y軸交于點C,頂點為D
(1)求直線AC的解析式與點D的坐標;
(2)在直線AC上方的拋物線上有一點E,作EF∥x軸,與拋物線交于點F,作EM⊥x軸于M,作FN⊥x軸于N,長度為2的線段PQ在直線AC上運動(點P在點Q右側(cè)),當四邊形EMNF的周長取最大值求四邊形DPQE的周長的最小值及對應(yīng)的點Q的坐標;
(3)如圖2,平移拋物線,使拋物線的頂點D在直線AD上移動,點D平移后的對應(yīng)點為D′,點A平移后的對應(yīng)點為A′,△A′D′C是否能為直角三角形?若能,請求出對應(yīng)的線段D′C的長;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀理解:如圖,Rt△AB中,,AC=BC,AB= 4cm.動點D沿著A→C→B的方向從A點運動到B點.DEAB,垂足為E.設(shè)AE長為cm,BD長為cm(當D與A重 合時,= 4;當D與B重合時=0).小云根據(jù)學習函數(shù)的經(jīng)驗,對函數(shù)隨自變量的變化而變化的規(guī)律進行了探究.下面是小云的探究過程,請補充完整:
(1)通過取點、畫圖、測量,得到了與的幾組值,如下表:
/cm | 0 | 0.5 | 1 | 1.5 | 2 | 2.5 | 3 | 3.5 | 4 |
/cm | 4 | 3.5 | 3.2 |
| 2.8 | 2.1 | 1.4 | 0.7 | 0 |
補全上面表格,要求結(jié)果保留一位小數(shù).則__________;
(2)在下面的網(wǎng)格中建立平面直角坐標系,描出以補全后的表中各對對應(yīng)值為坐標的點,畫出該函數(shù)的圖象;
(3)結(jié)合畫出的函數(shù)圖象,解決問題:當DB=AE時,AE的長度約為 cm.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知Rt△ABC中,CAB=60°,點O為斜邊AB上一點,且OA=2,以OA為半徑的⊙O與BC相切于D,與AC交于點E,連接AD.
(1)求線段CD的長;
(2)求⊙O與Rt△ABC重疊部分的面積.(結(jié)果保留準確值)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知反比例函數(shù)y=與一次函數(shù)y=ax+b的圖象相交于點A(2,6),和點B(4,m).
(1)求反比例函數(shù)與一次函數(shù)的解析式;
(2)直接寫出不等式≤ax+b的解集和△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,經(jīng)過原點的拋物線y=﹣x2﹣2mx(m>1)與x軸的另一個交點為A.過點P(﹣1,m)作直線PD⊥x軸于點D,交拋物線于點B,BC∥x軸交拋物線于點C.
(1)當m=2時.
①求線段BC的長及直線AB所對應(yīng)的函數(shù)關(guān)系式;
②若動點Q在直線AB上方的拋物線上運動,求點Q在何處時,△QAB的面積最大?
③若點F在坐標軸上,且PF=PC,請直接寫出符合條件的點F在坐標;
(2)當m>1時,連接CA、CP,問m為何值時,CA⊥CP?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:在中,,在中,,連接,取的中點,連接和.
(1)若點在邊上,點在邊上且與點不重合,如圖1,探索的關(guān)系并給予證明;
(2)如果將圖1中的繞點逆時針旋轉(zhuǎn)小于的角,如圖2,那么(1)中的結(jié)論是否仍成立?如果不成立,請舉出反例;如果成立,請給予證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,點F從菱形ABCD的頂點A出發(fā),沿A→D→B以1cm/s的速度勻速運動到點B,圖2是點F運動時,△FBC的面積y(cm2)隨時間x(s)變化的關(guān)系圖象,則a的值為( )
A. B. 2 C. D. 2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】.根據(jù)圖5中①所示的程序,得到了y與x的函數(shù)圖象,如圖5中②,若點M是
y軸正半軸上任意一點,過點M作PQ∥x軸交圖象于點P、Q,連接OP、OQ,則以下結(jié)論:
①x<0時,y=
②△OPQ的面積為定值
③x>0時,y隨x的增大而增大
④MQ=2PM
⑤∠POQ可以等于90°
其中正確結(jié)論是
A.①②④B.②④⑤C.③④⑤D.②③⑤
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com