精英家教網 > 初中數學 > 題目詳情

【題目】如圖,RtBOARtCOA的斜邊在x軸上,BA6,A10,0),ACOB相交于點E,且CACO,連接BC,下列判斷一定正確的是(  )

ABE∽△OCE;②C5,5);③BC;④SABC3

A. ①③ B. ②④ C. ①②③ D. ①②③④

【答案】D

【解析】

如圖,作CFOAFBHOAH,連接BF.①正確,根據兩角對應相等兩三角形相似即可判斷;①正確,利用等腰直角三角形想的性質即可判斷;③正確,求出點B坐標,利用兩點間距離公式計算即可;④正確,利用分割法計算即可;

如圖,作CFOAFBHOAH,連接BF

∵∠OCE=∠ABE90°,∠OEC=∠AEB,

∴△ABE∽△OCE,故①正確,

A10,0),

OA10,

OCCA,∠OCA90°,CFOA,

OFAFCF5,

C5,5),故②正確,

RtABO中,∵OB8,

OABHOBAB,

BH

tanBOH,

,

OH,

B,),

C5,5),

BC,故③正確,

SABCSCFB+SAFBSACF×5×5+×5× 3,故④正確,

故選:D

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,已知直線l與⊙O相離,OAl于點AOA5OA與⊙O相交于點P,AB與⊙O相切于點B,BP的延長線交直線l于點C.

(1)試判斷線段ABAC的數量關系,并說明理由;

(2)若在⊙O上存在點Q,使QAC是以AC為底邊的等腰三角形,求⊙O的半徑r的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】□ABCD,過點DDE⊥AB于點E,點F在邊CD上,DFBE,連接AFBF.

1)求證:四邊形BFDE是矩形;

2)若CF3BF4,DF5,求證:AF平分∠DAB.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,BC是路邊坡角為30°,長為10米的一道斜坡,在坡頂燈桿CD的頂端D處有一探射燈,射出的邊緣光線DADB與水平路面AB所成的夾角∠DAN和∠DBN分別是37°60°(圖中的點A、B、C、D、M、N均在同一平面內,CMAN).

(1)求燈桿CD的高度;

(2)求AB的長度(結果精確到0.1米).(參考數據:=1.73.sin37°≈060,cos37°≈0.80,tan37°≈0.75)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,有長為 24m 的籬笆,現一面利用墻(墻的最大可用長度 a 10m)圍成中間隔有一道籬笆的長方形花圃,設花圃的寬 AB xm,面積為 Sm2

1 S x 的函數關系式及 x 值的取值范圍;

2 要圍成面積為 45m2 的花圃,AB 的長是多少米?

3 AB 的長是多少米時,圍成的花圃的面積最大?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,在平面直角坐標系中,拋物線yax2+bx+3與直線yx3交于點A3,0)和點B(﹣2n),與y軸交于點C

1)求出拋物線的函數表達式;

2)在圖1中,平移線段AC,點A、C的對應點分別為M、N,當N點落在線段AB上時,M點也恰好在拋物線上,求此時點M的坐標;

3)如圖2,在(2)的條件下,在拋物線上是否存在點P(不與點A重合),使PMC的面積與AMC的面積相等?若存在,直接寫出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】△ABC中,AB=AC,點D、E、F分別在BC、AB、AC上,∠EDF=∠B.

(1)如圖1,求證:DECD=DFBE

(2)D為BC中點如圖2,連接EF.

①求證:ED平分∠BEF;

②若四邊形AEDF為菱形,求∠BAC的度數及的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,ABC的三個頂點都在格點上,點A的坐標為(2,4).

(1)畫出ABC關于x軸對稱的A1B1C1,并寫出點A1的坐標A1 ________________

(2)畫出A1B1C1繞原點O旋轉180°后得到的A2B2C2,并寫出點A2的坐標A2__________________

(3) ABC是否為直角三角形?答_________(填是或者不是).

(4)利用格點圖,畫出BC邊上的高AD,并求出AD的長,AD=_____________.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,PA、PB是⊙O的兩條切線,A、B是切點,AC是⊙O的直徑,∠BAC=35°,求∠P的度數.

查看答案和解析>>

同步練習冊答案