精英家教網 > 初中數學 > 題目詳情

如圖,AB=2,AC=5,延長BC到D,使BD=3BC,求AD的長.

解:由AB=2,AC=5,
得BC=AC-AB=3,
∵BD=3BC=9,
∴CD=6,
∴AD=AB+BC+CD=11.
故答案為:11.
分析:由已知條件可知,BC=AC-AB,又因為BD=3BC,則CD=BD-BC,故AD=AB+BC+CD可求.
點評:本題考查了線段長短的比較,做這類題時一定要圖形結合,這樣才直觀形象,便于計算.靈活運用線段的和、差、倍、分轉化線段之間的數量關系也是十分關鍵的一點.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

11、如圖,AB∥CD,AC∥BD,AD與BC交于O,AE⊥BC于E,DF⊥BC于F,那么圖中全等的三角形有( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

15、如圖,AB=AE,AC=AD,只要
BC=ED
(添加一個條件即可),就可得△ABC≌△AED.

查看答案和解析>>

科目:初中數學 來源: 題型:

13、如圖,AB∥CD,AC⊥BC,垂足為C.若∠A=40°,則∠BCD=
50
度.

查看答案和解析>>

科目:初中數學 來源: 題型:

27、如圖,AB=AD,AC=AE,∠BAC=∠DAE,則∠B與∠D相等嗎?說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2010•鄭州模擬)如圖,AB∥CD,AC⊥BC,垂足為C,∠BAC=67?,則∠BCD=
23
23
度.

查看答案和解析>>

同步練習冊答案