【題目】射線OA、OB、OC、OD、OE有公共端點(diǎn)O.

(1)若OA與OE在同一直線上(如圖1),試寫出圖中小于平角的角;

(2)若∠AOC=108°,∠COE=n°(0<n<72),OB平分∠AOE,OD平分∠COE(如圖2),求∠BOD的度數(shù);

(3)如圖3,若∠AOE=88°,∠BOD=30°,射OC繞點(diǎn)O在∠AOD內(nèi)部旋轉(zhuǎn)(不與OA、OD重合).探求:射線OC從OA轉(zhuǎn)到OD的過(guò)程中,圖中所有銳角的和的情況,并說(shuō)明理由.

【答案】(1)圖1中小于平角的角∠AOD,∠AOC,∠AOB,∠BOE,∠BOD,∠BOC,∠COE,∠COD,∠DOE;(2)∠BOD=54°;(3)∠AOE+∠AOB+∠AOC+∠AOD+∠BOC+∠BOD+∠BOE+∠COD+∠COE+∠DOE=412°.理由見(jiàn)解析.

【解析】

(1)根據(jù)角的定義即可解決;
(2)利用角平分線的性質(zhì)即可得出∠BOD=∠AOC+∠COE,進(jìn)而求出即可;
(3)將圖中所有銳角求和即可求得所有銳角的和與∠AOE、∠BOD和∠BOD的關(guān)系,即可解題.

(1)如圖1中小于平角的角∠AOD,AOC,AOB,BOE,BOD,BOC,COE,COD,DOE.

(2)如圖2,

OB平分∠AOE,OD平分∠COE,AOC=108°,COE=n°(0<n<72),

∴∠BOD=AOD﹣COE+COE=×108°=54°;

(3)如圖3,

AOE=88°,BOD=30°,

圖中所有銳角和為∠AOE+AOB+AOC+AOD+BOC+BOD+BOE+COD+COE+DOE

=4AOB+4DOE=6BOC+6COD

=4(AOE﹣BOD)+6BOD

=412°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解答題
(1)如圖1,AD、BC相交于點(diǎn)O,OA=OC,∠OBD=∠ODB.求證:AB=CD.
(2)如圖2,AB是⊙O的直徑,OA=1,AC是⊙O的弦,過(guò)點(diǎn)C的切線交AB的延長(zhǎng)線于點(diǎn)D,若OD= ,求∠BAC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】先化簡(jiǎn),再求值:

(1) [(xy)2(xy)(xy)]÷2x,其中 x=3,y=-2

(2)已知,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)A、B、C在數(shù)軸上,O為原點(diǎn),且BO:OC:CA=2:1:5.

(1)如果點(diǎn)C表示的數(shù)是x,請(qǐng)直接寫出點(diǎn)A、B表示的數(shù);

(2)如果點(diǎn)A表示的數(shù)比點(diǎn)C表示的數(shù)兩倍還大4,求線段AB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,方格紙中小正方形的邊長(zhǎng)為1,△ABC的三個(gè)頂點(diǎn)都在小正方形的格點(diǎn)上,求:

(1)邊AC,AB,BC的長(zhǎng);

(2)點(diǎn)CAB邊的距離;

(3)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC和△ADE是有公共頂點(diǎn)的等腰直角三角形,∠BAC=∠DAE=90°,點(diǎn)P為射線BD,CE的交點(diǎn).

(1)求證:BD=CE;
(2)若AB=2,AD=1,把△ADE繞點(diǎn)A旋轉(zhuǎn),
①當(dāng)∠EAC=90°時(shí),求PB的長(zhǎng);
②直接寫出旋轉(zhuǎn)過(guò)程中線段PB長(zhǎng)的最小值與最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,A、B兩個(gè)小集鎮(zhèn)在河流CD的同側(cè),分別到河的距離為AC=10千米,BD=30千米,且CD=30千米,現(xiàn)在要在河邊建一自來(lái)水廠,向A、B兩鎮(zhèn)供水,鋪設(shè)水管的費(fèi)用為每千米3萬(wàn),請(qǐng)你在河流CD上選擇水廠的位置M,使鋪設(shè)水管的費(fèi)用最節(jié)省,并求出總費(fèi)用是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠C=90°,AC=BC= ,將△ABC繞點(diǎn)A順時(shí)針?lè)较蛐D(zhuǎn)60°到△AB′C′的位置,連接C′B,則C′B=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,三角形ABC的三個(gè)頂點(diǎn)的位置如圖所示,點(diǎn)A'的坐標(biāo)是(-2,2),現(xiàn)將三角形ABC平移,使點(diǎn)A變換為點(diǎn)A',點(diǎn)B',C'分別是B,C的對(duì)應(yīng)點(diǎn).

(1)請(qǐng)畫(huà)出平移后的三角形A'B'C'(不寫畫(huà)法),并直接寫出B',C'的坐標(biāo);

(2)若三角形ABC內(nèi)部一點(diǎn)P的坐標(biāo)為(a,b),則點(diǎn)P的對(duì)應(yīng)點(diǎn)P'的坐標(biāo)是_______.

查看答案和解析>>

同步練習(xí)冊(cè)答案