【題目】先化簡,再求值:
(1) [(x-y)2+(x+y)(x-y)]÷2x,其中 x=3,y=-2
(2)已知,求的值.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將正方形OABC放在平面直角坐標系中,O是原點,A的坐標為(1, ),則點B的坐標為( )
A.(1﹣ , +1)
B.(﹣ , +1)??
C.(﹣1, +1)
D.(﹣1, )
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠A=36°,BD是∠B的平分線,交AC于點D,E是AB中點,ED交BC的延長線于點F.求證:AB=CF.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校數(shù)學綜合實踐小組的同學以“綠色出行”為主題,把某小區(qū)的居民對共享單車的了解和使用情況進行了問卷調(diào)查,在這次調(diào)查中,發(fā)現(xiàn)有20人對于共享單車不了解,使用共享單車的居民每天騎行路程不超過8千米,并將調(diào)查結(jié)果制作成統(tǒng)計圖,如圖所示.
(1)本次調(diào)查人數(shù)共人 , 使用過共享單車的有人;
(2)請將條形統(tǒng)計圖補充完整;
(3)如果這個小區(qū)大約有3000名居民,請估算出每天的騎行路程在2~4千米的有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,OB是∠AOC的平分線,OD是∠COE的平分線.
(1)如果∠AOC=70°,∠COE=50°,那么∠BOD是多少度?
(2)如果∠BOD=70°,那么∠AOE是多少度?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線l1∥l2,且l3和l1,l2分別交于A,B兩點,點P在AB上.
(1)試找出∠1,∠2,∠3之間的關(guān)系并說出理由;
(2)如果點P在A,B兩點之間運動,問∠1,∠2,∠3之間的關(guān)系是否發(fā)生變化?
(3)如果點P在A,B兩點外側(cè)運動,試探究∠1,∠2,∠3之間的關(guān)系(點P和A,B不重合).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知如圖,在平面直角坐標系中,點 B(m,0)、A(n,0)分別是 x 軸軸上兩點, 且滿足多項式(x2+mx+8)(x2-3x+n)的積中不含 x3項和 x2項,點 P(0,h)是 y 軸正半軸上的動點
(1)求三角形△ABP 的面積(用含 h 的代數(shù)式表示)
(2)過點 P 作 DP⊥PB,CP⊥PA,且 PD=PB,PC=AP
① 連接 AD、BC 相交于點 E,再連 PE,求∠BEP 的度數(shù)
② 連 CD 與 y 軸相交于點 Q,當動點 P 在 y 軸正半軸上運動時,線段 PQ 的長度變不變?如果不變,請求出其值;如果變化,請求出其變化范圍
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】射線OA、OB、OC、OD、OE有公共端點O.
(1)若OA與OE在同一直線上(如圖1),試寫出圖中小于平角的角;
(2)若∠AOC=108°,∠COE=n°(0<n<72),OB平分∠AOE,OD平分∠COE(如圖2),求∠BOD的度數(shù);
(3)如圖3,若∠AOE=88°,∠BOD=30°,射OC繞點O在∠AOD內(nèi)部旋轉(zhuǎn)(不與OA、OD重合).探求:射線OC從OA轉(zhuǎn)到OD的過程中,圖中所有銳角的和的情況,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com