【題目】如圖所示,以的斜邊為邊,在的同側(cè)作正方形,,交于點(diǎn),連接.若,,則________.
【答案】
【解析】
在AC上截取CG=AB=4,連接OG,根據(jù)三角形內(nèi)角和定理推出∠ABO=∠ACO,進(jìn)而證出△BAO≌△CGO,推出OA=OG=,∠AOB=∠COG,得出△AOG是等腰直角三角形,再結(jié)合勾股定理計(jì)算即可得出答案.
在AC上截取CG=AB=4,連接OG
∵四邊形BCEF是正方形,∠BAC=90°
∴OB=OC,∠BAC=∠BOC=90°
∴∠ABO=∠ACO
∵BA=CG,∠ABO=∠ACO,OB=OC
∴△BAO≌△CGO
∴OA=OG=,∠AOB=∠COG
∵∠BOC=∠COG+∠BOG=90°
∴∠AOG=∠AOB+∠BOG=90°,即△AOG是等腰直角三角形
∴,
∴AC=AG+CG=12,
∴,
故答案為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)E、F分別是四邊形ABCD的邊AD、BC的中點(diǎn),G、H分別是對角線BD、AC的中點(diǎn),要使四邊形EGFH是菱形,則四邊形ABCD需滿足的條件是( )
A.AB=CDB.AC=BDC.AC⊥BDD.AD=BC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在長方形ABCD中,AB=12cm,BC=10cm,點(diǎn)P從A出發(fā),沿A→B→C→D的路線運(yùn)動,到D停止;點(diǎn)Q從D點(diǎn)出發(fā),沿D→C→B→A路線運(yùn)動,到A點(diǎn)停止.若P、Q兩點(diǎn)同時出發(fā),速度分別為每秒lcm、2cm,a秒時P、Q兩點(diǎn)同時改變速度,分別變?yōu)槊棵?/span>2cm、cm(P、Q兩點(diǎn)速度改變后一直保持此速度,直到停止),如圖2是△APD的面積s(cm2)和運(yùn)動時間x(秒)的圖象.
(1)求出a值;
(2)設(shè)點(diǎn)P已行的路程為y1(cm),點(diǎn)Q還剩的路程為y2(cm),請分別求出改變速度后,y1、y2和運(yùn)動時間x(秒)的關(guān)系式;
(3)求P、Q兩點(diǎn)都在BC邊上,x為何值時P、Q兩點(diǎn)相距3cm?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“震災(zāi)無情人有情”.民政局將全市為四川受災(zāi)地區(qū)捐贈的物資打包成件,其中帳篷和食品共320件,帳篷比食品多80件.
(1)求打包成件的帳篷和食品各多少件?
(2)現(xiàn)計(jì)劃租用甲、乙兩種貨車共8輛,一次性將這批帳篷和食品全部運(yùn)往受災(zāi)地區(qū).已知甲種貨車最多可裝帳篷40件和食品10件,乙種貨車最多可裝帳篷和食品各20件.則民政局安排甲、乙兩種貨車時有幾種方案?請你幫助設(shè)計(jì)出來.
(3)在第(2)問的條件下,如果甲種貨車每輛需付運(yùn)輸費(fèi)4000元,乙種貨車每輛需付運(yùn)輸費(fèi)3600元.民政局應(yīng)選擇哪種方案可使運(yùn)輸費(fèi)最少?最少運(yùn)輸費(fèi)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料一:小明計(jì)算,發(fā)現(xiàn)其結(jié)果為計(jì)算,發(fā)現(xiàn)其結(jié)果為
閱讀材料二:小華發(fā)現(xiàn)一個有趣的算式
(1)請模仿小華的算式,再寫出一個類似的正確算式;
(2)請用字母表示小華算式的規(guī)律;
(3)請用閱讀材料一中蘊(yùn)含的數(shù)學(xué)規(guī)律或你掌握的數(shù)學(xué)知識說明(2)中的規(guī)律為何成立.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)E是四邊形ABCD的對角線BD上一點(diǎn),且∠BAC=∠BDC=∠DAE.
①試說明BE·AD=CD·AE;
②根據(jù)圖形特點(diǎn),猜想可能等于哪兩條線段的比?并證明你的猜想,(只須寫出有線段的一組即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是圓O的弦,OA⊥OD,AB,OD相交于點(diǎn)C,且CD=BD.
(1)判斷BD與圓O的位置關(guān)系,并證明你的結(jié)論;
(2)當(dāng)OA=3,OC=1時,求線段BD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=8,BC=6,P為AD上一點(diǎn),將△ABP沿BP翻折至△EBP,PE與CD相交于點(diǎn)O,且OE=OD,則AP的長為 ( ) .
A.4.8B.3C.5D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABD和△ACE中,AB=AD,AC=AE,∠BAD=∠CAE,連接BC、DE相交于點(diǎn)F,BC與AD相交于點(diǎn)G.
(1)試判斷線段BC、DE的數(shù)量關(guān)系,并說明理由;
(2)若BC平分∠ABD,求證線段FD是線段FG 和 FB的比例中項(xiàng).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com