【題目】如圖,已知在△ABC中,AB=AC,BC=12厘米,點(diǎn)D為AB上一點(diǎn)且BD=8厘米,點(diǎn)P在線段BC上以2厘米/秒的速度由B點(diǎn)向C點(diǎn)運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t,同時(shí),點(diǎn)Q在線段CA上由C點(diǎn)向A點(diǎn)運(yùn)動(dòng).
(1)用含t的式子表示PC的長為_______________;
(2)若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)p的運(yùn)動(dòng)速度相等,當(dāng)t=2時(shí),三角形BPD與三角形CQP是否全等,請(qǐng)說明理由;
(3)若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度不相等,請(qǐng)求出點(diǎn)Q的運(yùn)動(dòng)速度是多少時(shí),能夠使三角形BPD與三角形CQP全等?
【答案】(1)PC=12-2t;(2)ΔBPD≌ΔCQP理由見詳解;(3) cm/s
【解析】
(1)根據(jù)BC=12cm,點(diǎn)P在線段BC上以2厘米/秒的速度由B點(diǎn)向C點(diǎn)運(yùn)動(dòng),所以當(dāng)t秒時(shí),運(yùn)動(dòng)2t,因此PC=12-2t.(2)若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)p的運(yùn)動(dòng)速度相等,當(dāng)t=2s時(shí),則CQ=4cm,BP=4cm,因?yàn)锽C=12cm,所以PC=8cm,又因?yàn)锽D=8cm,AB=AC,所以∠B=∠C,因此求出ΔBPD≌ΔCQP.(3) 已知∠B=∠C,BP≠CQ,根據(jù)ΔBPD≌ΔCQP得出 BP=PC,進(jìn)而算出時(shí)間t,再算出v即可.
(1)由題意得出:PC=12-2t
(2)若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)p的運(yùn)動(dòng)速度相等,當(dāng)t=2s時(shí),則CQ=4cm,BP=4cm,∵ BC=12cm,∴PC=8cm,又∵BD=8cm,AB=AC,∴∠B=∠C,在ΔBPD和ΔCQP中,CQ=BP, ∠B=∠C,PC=BD,∴ΔBPD≌ΔCQP(SAS).
(3)若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度不相等,∵Vp≠VQ,∴BP≠CQ,又∵△BPD≌△CPQ,∠B=∠C,則BP=PC=6cm,CQ=BD=8cm,∴點(diǎn)P、點(diǎn)Q運(yùn)動(dòng)的時(shí)間 t= =3s ,
∴VQ ===cm/s,即Q的速度為cm/s.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,D為BC邊上一點(diǎn).
(1)如圖①,在Rt△ABC中,∠C=90°,將△ABC沿著AD折疊,點(diǎn)C落在AB邊上.請(qǐng)用直尺和圓規(guī)作出點(diǎn)D(不寫作法,保留作圖痕跡);
(2)如圖②,將△ABC沿著過點(diǎn)D的直線折疊,點(diǎn)C落在AB邊上的E處.
①若DE⊥AB,垂足為E,請(qǐng)用直尺和圓規(guī)作出點(diǎn)D(不寫作法,保留作圖痕跡);
②若AB=,BC=3,∠B=45°,求CD的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個(gè)不透明的袋子里裝有10個(gè)除號(hào)碼外其余都相同的小球,每個(gè)小球的號(hào)碼分別是1,2,3,4,5,6,7,8,9,10將它們充分搖勻,并從中任意摸出一個(gè)小球.規(guī)定摸出小球號(hào)碼能被3整除時(shí),甲獲勝;摸出小球號(hào)碼能被5整除時(shí),乙獲勝;這個(gè)游戲?qū)滓译p方公平么?請(qǐng)說明理由.如果不公平,應(yīng)該如何修改游戲規(guī)則才能對(duì)雙方公平?(游戲?qū)﹄p方公平的原則是:雙方獲勝的概率相等)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖像與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),且對(duì)稱軸為直線x=1,點(diǎn)B坐標(biāo)為(-1,0).則下面的四個(gè)結(jié)論:①2a+b=0;②4a-2b+c<0;③ac>0;④當(dāng)y<0時(shí),x<-1或x>3.其中正確的個(gè)數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,AB=AC=8,BO=AB,點(diǎn)M為BC邊上一動(dòng)點(diǎn),將線段OM繞點(diǎn)O按逆時(shí)針方向旋轉(zhuǎn)90°至ON,連接AN、CN,則△CAN周長的最小值為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某廠共有120名生產(chǎn)工人,每個(gè)工人每天可生產(chǎn)螺栓25個(gè)或螺母20個(gè),如果一個(gè)螺栓與兩個(gè)螺母配成一套 ,那么每天安排多名工人生產(chǎn)螺栓,多少名工人生產(chǎn)螺母,才能使每天生產(chǎn)出來的產(chǎn)品配成最多套?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了開設(shè)武術(shù)、舞蹈、剪紙等三項(xiàng)活動(dòng)課程以提升學(xué)生的體藝素養(yǎng),隨機(jī)抽取了部分學(xué)生對(duì)這三項(xiàng)活動(dòng)的興趣情況進(jìn)行了調(diào)查(每人從中只能選一項(xiàng)),并將調(diào)查結(jié)果繪制成如圖兩幅統(tǒng)計(jì)圖,請(qǐng)你結(jié)合圖中信息解答問題.
(1)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)本次抽樣調(diào)查的樣本容量是 ;
(3)已知該校有1200名學(xué)生,請(qǐng)你根據(jù)樣本估計(jì)全校學(xué)生中喜歡剪紙的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB∥CD,OE平分∠BOC,OF⊥OE,OP⊥CD,∠ABO=40°,則下列結(jié)論:①∠BOE=70°;②OF平分∠BOD;③∠POE=∠BOF;④∠POB=2∠DOF.其中正確結(jié)論有_____填序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程(m﹣1)x2﹣x﹣2=0.
(1)若x=﹣1是方程的一個(gè)根,求m的值和方程的另一根;
(2)當(dāng)m為何實(shí)數(shù)時(shí),方程有實(shí)數(shù)根;
(3)若x1,x2是方程的兩個(gè)根,且,試求實(shí)數(shù)m的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com