【題目】已知:△ABC是等腰直角三角形,∠BAC90°,將△ABC繞點(diǎn)C順時(shí)針?lè)较蛐D(zhuǎn)得到△ABC,記旋轉(zhuǎn)角為α,當(dāng)90°α180°時(shí),作ADAC,垂足為DADBC交于點(diǎn)E

1)如圖1,當(dāng)∠CAD15°時(shí),作∠AEC的平分線EFBC于點(diǎn)F

①寫(xiě)出旋轉(zhuǎn)角α的度數(shù);

②求證:EA′+ECEF;

2)如圖2,在(1)的條件下,設(shè)P是直線AD上的一個(gè)動(dòng)點(diǎn),連接PA,PF,若AB,求線段PA+PF的最小值.(結(jié)果保留根號(hào))

【答案】1)①105°,②見(jiàn)解析;(2

【解析】

1解直角三角形求出∠A′CD即可解決問(wèn)題,

連接A′F,設(shè)EFCA′于點(diǎn)O,在EF時(shí)截取EM=EC,連接CM.首先證明△CFA′是等邊三角形,再證明△FCM≌△A′CESAS),即可解決問(wèn)題.

2)如圖2中,連接A′F,PB′AB′,作B′M⊥ACAC的延長(zhǎng)線于M.證明△A′EF≌△A′EB′,推出EF=EB′,推出B′,F關(guān)于A′E對(duì)稱,推出PF=PB′,推出PA+PF=PA+PB′≥AB′,求出AB′即可解決問(wèn)題.

解:由∠CA′D15°,可知∠A′CD=90°-15°=75°,所以∠A′CA=180°-75°=105°即旋轉(zhuǎn)角α105°

證明:連接A′F,設(shè)EFCA′于點(diǎn)O.在EF時(shí)截取EMEC,連接CM

∵∠CED∠A′CE+∠CA′E45°+15°60°,

∴∠CEA′120°

∵FE平分∠CEA′,

∴∠CEF∠FEA′60°,

∵∠FCO180°45°75°60°,

∴∠FCO∠A′EO,∵∠FOC∠A′OE,

∴△FOC∽△A′OE

,

,

∵∠COE∠FOA′

∴△COE∽△FOA′,

∴∠FA′O∠OEC60°

∴△A′CF是等邊三角形,

∴CFCA′A′F

∵EMEC,∠CEM60°,

∴△CEM是等邊三角形,

∠ECM60°,CMCE,

∵∠FCA′∠MCE60°,

∴∠FCM∠A′CE,

∴△FCM≌△A′CESAS),

∴FMA′E,

∴CE+A′EEM+FMEF

2)解:如圖2中,連接A′FPB′,AB′,作B′M⊥ACAC的延長(zhǎng)線于M

可知,∠EA′F′EA′B′75°,A′EA′EA′FA′B′,

∴△A′EF≌△A′EB′

∴EFEB′,

∴B′F關(guān)于A′E對(duì)稱,

∴PFPB′,

∴PA+PFPA+PB′≥AB′,

Rt△CB′M中,CB′BCAB2,∠MCB′30°

∴B′MCB′1,CM,

∴AB′

∴PA+PF的最小值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一個(gè)不透明的布袋中,有三個(gè)除顏色外其它均相同的小球,其中兩個(gè)黑色,一個(gè)紅色.

(1)請(qǐng)用表格或樹(shù)狀圖求出:一次隨機(jī)取出2個(gè)小球,顏色不同的概率.

(2)如果老師在布袋中加入若干個(gè)紅色小球.然后小明通過(guò)做實(shí)驗(yàn)的方式猜測(cè)加入的小球數(shù),小 明每次換出一個(gè)小球記錄下慎色并放回,實(shí)驗(yàn)數(shù)據(jù)如下表:

實(shí)驗(yàn)次數(shù)

100

200

300

400

500

1000

摸出紅球

78

147

228

304

373

752

請(qǐng)你幫小明算出老師放入了多少個(gè)紅色小球.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】學(xué)校為了解九年級(jí)學(xué)生對(duì)八禮四儀的掌握情況,對(duì)該年級(jí)的500名同學(xué)進(jìn)行問(wèn)卷測(cè)試,并隨機(jī)抽取了10名同學(xué)的問(wèn)卷,統(tǒng)計(jì)成績(jī)?nèi)缦拢?/span>

得分

10

9

8

7

6

人數(shù)

3

3

2

1

1

1)計(jì)算這10名同學(xué)這次測(cè)試的平均得分;

2)如果得分不少于9分的定義為優(yōu)秀,估計(jì)這 500名學(xué)生對(duì)八禮四儀掌握情況優(yōu)秀的人數(shù);

3)小明所在班級(jí)共有40人,他們?nèi)繀⒓恿诉@次測(cè)試,平均分為7.8分.小明的測(cè)試成績(jī)是8分,小明說(shuō),我的測(cè)試成績(jī)?cè)诎嗉?jí)中等偏上,你同意他的觀點(diǎn)嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有兩個(gè)不透明的袋子,甲袋子里裝有標(biāo)有兩個(gè)數(shù)字的張卡片,乙袋子里裝有標(biāo)有三個(gè)數(shù)字的張卡片,兩個(gè)袋子里的卡片除標(biāo)有的數(shù)字不同外,其大小質(zhì)地完全相同.

1)從乙袋里任意抽出一張卡片,抽到標(biāo)有數(shù)字的概率為   

2)求從甲、乙兩個(gè)袋子里各抽一張卡片,抽到標(biāo)有兩個(gè)數(shù)字的卡片的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】能分解成兩個(gè)一次因式的積,則整數(shù)k=_________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖在△ABC中∠A60°,BMAC于點(diǎn)M,CNAC于點(diǎn)N,PBC邊的中點(diǎn),連接PM,PN,則下列結(jié)論:PMPN;PMN為等邊三角形;當(dāng)∠ABC45°時(shí),BNBC,其中正確的是(  )

A.①②③B.①②④C.①③④D.②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)A(﹣3,y1),B(﹣2,y2),C3y3)都在反比例函數(shù)yk0)的圖象上,則(  )

A.y1y2y3B.y3y2y1C.y3y1y2D.y2y1y3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線yx2+bx+cx軸相交于A(﹣1,0),Bm0)兩點(diǎn),與y軸相交于點(diǎn)C0,﹣3),拋物線的頂點(diǎn)為D

1)求BD兩點(diǎn)的坐標(biāo);

2)若P是直線BC下方拋物線上任意一點(diǎn),過(guò)點(diǎn)PPHx軸于點(diǎn)H,與BC交于點(diǎn)M,設(shè)Fy軸一動(dòng)點(diǎn),當(dāng)線段PM長(zhǎng)度最大時(shí),求PH+HF+CF的最小值;

3)在第(2)問(wèn)中,當(dāng)PH+HF+CF取得最小值時(shí),將△OHF繞點(diǎn)O順時(shí)針旋轉(zhuǎn)60°后得到△OHF,過(guò)點(diǎn)FOF的垂線與x軸交于點(diǎn)Q,點(diǎn)R為拋物線對(duì)稱軸上的一點(diǎn),在平面直角坐標(biāo)系中是否存在點(diǎn)S,使得點(diǎn)D、Q、RS為頂點(diǎn)的四邊形為菱形,若存在,請(qǐng)直接寫(xiě)出點(diǎn)S的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校開(kāi)設(shè)了:籃球,:足球,:跳繩,:健美操四種體育活動(dòng),為了解學(xué)生對(duì)這四種體育活動(dòng)的喜歡情況,在全校范圍內(nèi)隨機(jī)抽取若干名學(xué)生,進(jìn)行問(wèn)卷調(diào)查(每個(gè)被調(diào)查的同學(xué)必須選擇而且只能在4中體育活動(dòng)中選擇一種).將數(shù)據(jù)進(jìn)行整理并繪制成以下兩幅統(tǒng)計(jì)圖(未畫(huà)完整).

1)這次調(diào)查中,一共查了 名學(xué)生;

2)請(qǐng)補(bǔ)全兩幅統(tǒng)計(jì)圖;

3)若有3名最喜歡足球運(yùn)動(dòng)的學(xué)生,1名最喜歡跳繩運(yùn)動(dòng)的學(xué)生組隊(duì)外出參加一次聯(lián)誼互動(dòng),欲從中選出2人擔(dān)任組長(zhǎng)(不分正副),求兩人均是最喜歡足球運(yùn)動(dòng)的學(xué)生的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案