【題目】如圖,在ABC中,ABACDBC中點(diǎn),AEBD,且AEBD

1)求證:四邊形AEBD是矩形;

2)連接CEAB于點(diǎn)F,若∠ABE30°,AE2,求EF的長(zhǎng).

【答案】(1)證明見解析;(2)

【解析】

(1)AEBD,且AEBD可得四邊形AEBD是平行四邊形,再根據(jù)ABAC,DBC中點(diǎn),可知ADBC即可得出四邊形AEBD是矩形.

(2)根據(jù)30°所對(duì)的直角邊是斜邊的一半即可求出EB,再根據(jù)矩形的性質(zhì)求出BC即可利用勾股定理求出EC,由題意可證△AEF∽△BCF,再根據(jù)對(duì)應(yīng)邊成比例即可求出結(jié)果.

1)證明:∵AEBDAEBD,

∴四邊形AEBD是平行四邊形,

ABAC,DBC的中點(diǎn),

ADBC

∴∠ADB90°,

∴四邊形AEBD是矩形.

2)解:∵四邊形AEBD是矩形,

∴∠AEB90°,

∵∠ABE30°,AE2,

BE2BC4,

EC2

AEBC,

∴△AEF∽△BCF,

,

EFEC=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1.已知四邊形是矩形.點(diǎn)的延長(zhǎng)線上.相交于點(diǎn),與相交于點(diǎn)

求證:;

,求的長(zhǎng);

如圖2,連接,求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=BC=8,AO=BO,點(diǎn)M是射線CO上的一個(gè)動(dòng)點(diǎn),∠AOC=60°,則當(dāng)△ABM為直角三角形時(shí),AM的長(zhǎng)為____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形的邊長(zhǎng)為1,點(diǎn)E是邊上任意一點(diǎn)(端點(diǎn)除外),線段的垂直平分線交,分別于點(diǎn)FG,,的中點(diǎn)分別為M,N

1)求證:;

2)求的最小值;

3)當(dāng)點(diǎn)E上運(yùn)動(dòng)時(shí),的大小是否變化?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,二次函數(shù)的圖像(記為拋物線)與y軸交于點(diǎn)C,與x軸分別交于點(diǎn)AB,點(diǎn)AB的橫坐標(biāo)分別記為,,且

1)若,,且過點(diǎn),求該二次函數(shù)的表達(dá)式;

2)若關(guān)于x的一元二次方程的判別式.求證:當(dāng)時(shí),二次函數(shù)的圖像與x軸沒有交點(diǎn).

3)若,點(diǎn)P的坐標(biāo)為,過點(diǎn)P作直線l垂直于y軸,且拋物線的頂點(diǎn)在直線l上,連接OP、AP、BPPA的延長(zhǎng)線與拋物線交于點(diǎn)D,若,求的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,,.點(diǎn)P是平面內(nèi)不與AC重合的任意一點(diǎn),連接,將線段繞點(diǎn)P逆時(shí)針旋轉(zhuǎn)得到線段,連接.點(diǎn)M的中點(diǎn),點(diǎn)N的中點(diǎn).

1)問題發(fā)現(xiàn)

如圖1,當(dāng)時(shí),的值是________,直線與直線相交所成的較小角的度數(shù)是________

2)類比探究

如圖2,當(dāng)時(shí),請(qǐng)寫出的值及直線與直線相交所成的較小角的度數(shù),并就圖2的情形說明理由.

3)解決問題

如圖3,當(dāng)時(shí),若點(diǎn)E的中點(diǎn),點(diǎn)P在直線上,請(qǐng)直接寫出點(diǎn)B,P,D在同一條直線上時(shí)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在中,,點(diǎn)D、E分別是邊的中點(diǎn),連接,將繞點(diǎn)A按順時(shí)針方向旋轉(zhuǎn),記旋轉(zhuǎn)角為、所在直線相交所成的銳角為

1)問題發(fā)現(xiàn)

當(dāng)時(shí),________;________°

2)拓展探究

試判斷:當(dāng)時(shí),的大小有無變化?請(qǐng)僅就圖2的情形給出證明.

3)在旋轉(zhuǎn)過程中,當(dāng)時(shí),直接寫出此時(shí)的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】實(shí)踐操作

如圖①,將矩形紙片沿對(duì)角線翻折,使點(diǎn)落在矩形所在平面內(nèi),相交于點(diǎn)E,連接

解決問題

1)在圖①中,

的位置關(guān)系為________;

②將剪下后展開,得到的圖形是________;

2)若圖①中的矩形變?yōu)槠叫兴倪呅螘r(shí)(),如圖②所示,結(jié)論①和結(jié)論②是否成立,若成立,請(qǐng)?zhí)暨x其中的一個(gè)結(jié)論加以證明,若不成立,請(qǐng)說明理由;

拓展應(yīng)用

3)在圖②中,若,當(dāng)恰好為直角三角形時(shí),求的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)舉行鋼筆書法大賽,對(duì)各年級(jí)同學(xué)的獲獎(jiǎng)情況進(jìn)行了統(tǒng)計(jì),并繪制了如下兩幅不完整的統(tǒng)計(jì)圖.

請(qǐng)結(jié)合圖中相關(guān)信息解答下列問題:

(1)扇形統(tǒng)計(jì)圖中三等獎(jiǎng)所在扇形的圓心角的度數(shù)是______度;

(2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)全;

(3)獲得一等獎(jiǎng)的同學(xué)中有來自七年級(jí),有來自九年級(jí),其他同學(xué)均來自八年級(jí).現(xiàn)準(zhǔn)備從獲得一等獎(jiǎng)的同學(xué)中任選2人參加市級(jí)鋼筆書法大賽,請(qǐng)通過列表或畫樹狀圖的方法求所選出的2人中既有八年級(jí)同學(xué)又有九年級(jí)同學(xué)的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案