【題目】如圖1,在平面直角坐標(biāo)系中,已知點(diǎn),點(diǎn)為線段上一點(diǎn),且滿足

1)求直線的解析式及點(diǎn)的坐標(biāo);

2)如圖2,為線段上一動(dòng)點(diǎn),連接交于點(diǎn),試探索是否為定值?若是,求出該值;若不是,請(qǐng)說明理由;

3)點(diǎn)為坐標(biāo)軸上一點(diǎn),請(qǐng)直接寫出滿足為等腰三角形的所有點(diǎn)的坐標(biāo).

【答案】1;(2)是定值,定值為2;(3, ,,,,

【解析】

1)利用待定系數(shù)法可求出解析式,然后過點(diǎn)CCFOB,利用等腰三角形的性質(zhì)求出點(diǎn)C橫坐標(biāo),再利用解析式求出點(diǎn)C坐標(biāo)即可;

2)先利用勾股定理計(jì)算出AB、OC長,從而證明OC=BC=AC,再利用等邊對(duì)等角得到∠CAO=AOC,最后利用三角形外角定理即可得到結(jié)果;

3)分BP=BCCP=CB、PB=PC三種情況討論,分別進(jìn)行計(jì)算即可.

解:(1)設(shè),

代入點(diǎn)、可得

解得:,

設(shè),如圖作,

,

,即

將點(diǎn)代入可得:,

;

2)是定值,定值為2

由(1)可得,

∴在中,,

又∵在,,

,

,

,

,

又∵,

,

又∵

;

3)①BC=BP=時(shí):

當(dāng)點(diǎn)Px軸上時(shí),OP=,此時(shí),

當(dāng)點(diǎn)Py軸上時(shí),在RtOBP中,OP=,此時(shí),

CB=CP=時(shí):

由(2)知OC=

CP=OC,此時(shí)

PB=PC時(shí):

當(dāng)Px軸上時(shí),設(shè)P(x,0),則,,

,解得

此時(shí),

當(dāng)Py軸上時(shí),設(shè)P(0,y),則,,

,解得,

此時(shí),

綜上,,,,,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象的頂點(diǎn)在第一象限,且過點(diǎn)(0,1)和(﹣1,0),下列結(jié)論:①ab<0,b2>4,0<a+b+c<2,0<b<1,⑤當(dāng)x>﹣1時(shí),y>0.其中正確結(jié)論的個(gè)數(shù)是( 。

A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在正方形ABCD中,P是對(duì)角線BD上的一點(diǎn),點(diǎn)E在AD的延長線上,且PA=PE,PE交CD于F.

(1)證明:PC=PE;

(2)求CPE的度數(shù);

(3)如圖2,把正方形ABCD改為菱形ABCD,其他條件不變,當(dāng)ABC=120°時(shí),連接CE,試探究線段AP與線段CE的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明同學(xué)在用描點(diǎn)法畫二次函數(shù)y=x2+bx+c圖像時(shí),由于粗心他算錯(cuò)了一個(gè)y值,列出了下面表格:

x

-1

0

1

2

3

y=x2+bx+c

5

3

2

3

6

(1)請(qǐng)你幫他指出這個(gè)錯(cuò)誤的y值,并說明理由;

(2)若點(diǎn)M(m,y1),N(m+4,y2)在二次函數(shù)y=x2+bx+c圖像上,且m>-1,試比較y1y2的大小.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)習(xí)小組在探索“各內(nèi)角都相等的圓內(nèi)接多邊形是否為正多邊形”時(shí),有如下探討:

甲同學(xué):我發(fā)現(xiàn)這種多邊形不一定是正多邊形.如圓內(nèi)接矩形不一定是正方形.

乙同學(xué):我知道邊數(shù)為3時(shí),它是正三角形;我想,邊數(shù)為5時(shí),它可能也是正五邊形…

丙同學(xué):我發(fā)現(xiàn)邊數(shù)為6時(shí),它也不一定是正六邊形.如圖2,ABC是正三角形,弧AD、弧BE、弧CF均相等,這樣構(gòu)造的六邊形ADBECF不是正六邊形.

(1)如圖1,若圓內(nèi)接五邊形ABCDE的各內(nèi)角均相等,則ABC= °,并簡要說明圓內(nèi)接五邊形ABCDE為正五邊形的理由;

(2)如圖2,請(qǐng)證明丙同學(xué)構(gòu)造的六邊形各內(nèi)角相等;

(3)根據(jù)以上探索過程,就問題“各內(nèi)角都相等的圓內(nèi)接多邊形是否為正多邊形”的結(jié)論與“邊數(shù)n(n≥3,n為整數(shù))”的關(guān)系,提出你的猜想(不需證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,對(duì)角線ACBD相交于點(diǎn)O,下列條件不能判定四邊形ABCD為平行四邊形的是( 。

A.ABCD,ADBCB.OAOC,OBOD

C.ADBC,ABCDD.ABCDADBC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為1的正方形網(wǎng)格中建立平面直角坐標(biāo)系,已知ABC三個(gè)頂點(diǎn)分別為A﹣1,2)、B2,1)、C4,5).

1)畫出ABC關(guān)于x對(duì)稱的A1B1C1

2)以原點(diǎn)O為位似中心,在x軸的上方畫出A2B2C2,使A2B2C2ABC位似,且位似比為2,并求出A2B2C2的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了體育活動(dòng)更好的開展,決定購買一批籃球和足球.據(jù)了解:籃球的單價(jià)比足球的單價(jià)多20元,用1000元購買籃球的個(gè)數(shù)與用800元購買足球的個(gè)數(shù)相同.

1)籃球、足球的單價(jià)各是多少元?

2)若學(xué)校打算購買籃球和足球的數(shù)量共100個(gè),且購買的總費(fèi)用不超過9600元,問最多能購買多少個(gè)籃球?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,對(duì)角線ACBD交于點(diǎn)O,DEAB于點(diǎn)E,連接OE,若DE,BE1,則∠AOE的度數(shù)是( 。

A.30°B.45°C.60°D.75°

查看答案和解析>>

同步練習(xí)冊(cè)答案